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ABSTRACT

Transition Path Theory (TPT) is used for a comprehensive analysis of sudden stratospheric warming (SSW) events in a highly idealized
wave-mean flow interaction system with stochastic forcing. TPT is a statistical mechanics framework that explicitly considers rare events
as an ensemble, and provides relationships between short-term forecasting and long-term climatology. We use the probability current, a
central TPT quantity, to build a picture of critical altitude-dependent interactions between waves and the mean flow that fuel SSW events,
both average behavior and variability across the SSW ensemble. We find that the rapid deceleration of zonal wind tends to be preceded
by a gradual, halting decay in wind strength and a steady increase in meridional heat flux, which conspire to precondition the vortex for
collapse. The ensemble-level description allows us to identify the signal of an oncoming SSW emerging from background variability during
preconditioning, well before the sudden collapse. To circumvent the costly approach of extensive direct simulation of the full rare event
ensemble, we implement a highly parallel computational method that launches a large collection of short simulations from many initial
conditions, estimating long-timescale rare event statistics from short-term tendencies.

1. Introduction

Extreme weather events, by definition, are exceptional
and occupy the fringes of the atmosphere’s behavior dis-
tribution. Nevertheless, extreme events play an important
role in atmospheric circulation. Large storms and changes
in circulation are responsible for rapid movement of heat
and moisture through the atmosphere. From a human per-
spective, weather is inconsequential when it follows mean
behavior; it is the anomalies that challenge society (Lesk
etal. 2016; Kron et al. 2019). Extreme weather is taking an
increasing toll on ecosystems, economies, and human life,
due to both a changing climate and increasing reliance on
weather-susceptible infrastructure (e.g., Mann et al. 2017,
Frame et al. 2020).

Significant efforts have gone toward estimating rare
event probabilities and forecasting them with as much lead
time as possible (e.g., Stephenson et al. 2008; Kim et al.
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2019; Vitart and Robertson 2018). Earth system models are
growing ever more powerful, and there is increasing inter-
est in measuring their fidelity on extreme events, beyond
just mean behavior (Hu et al. 2019). Capturing extremes is
arguably the most important task of climate modeling, and
part of our goal here is to motivate a set of quantities that
a good model should reproduce.

Transition path theory (TPT), introduced in E and
Vanden-Eijnden (20006), is a statistical mechanics frame-
work to describe rare event dynamics. TPT has been ap-
plied within numerous studies of conformational change in
biomolecules (e.g., Noé et al. 2009a; Meng et al. 2016; Liu
et al. 2019; Thiede et al. 2019; Strahan et al. 2021), but has
only recently been applied to geophysical dynamics. Miron
et al. (2021) used TPT to map out garbage transport paths
across the two-dimensional ocean, and Finkel et al. (2020)
used TPT to understand rare stratospheric transitions in
a highly reduced (just three variables) model of sudden
stratospheric warming (SSW) events by Ruzmaikin et al.
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(2003) and Birner and Williams (2008). Here, we explore
a stochastically forced version of the classic Holton and
Mass (1976) model, one of the first models to capture the
key elements of a SSW. In the language of TPT, a SSW
event is a trajectory that begins in a climatologically “nor-
mal” state (a strong polar vortex) and ends in an “extreme”
state (a sudden warming, where the vortex has been broken
down).

This paper complements our recent analysis of fore-
casting and predictability in the Holton-Mass model
(Finkel et al. 2021), where we computed key forecast-
ing functions—the forward committor and lead time—that
give the probability of SSW and its expected arrival time,
as a function of initial conditions. The TPT analysis we
undertake here is related to the forecasting problem, but
furthermore addresses the event’s mechanism all the way
from start to finish, not just forward in time from a fixed
initial condition. Crucially, TPT distinguishes between the
onset of an atmospheric disturbance (in our case study, a
breakdown of the polar vortex from strong to weak) and
the persistence of that disturbance (the “vacillation cycles”
of an already weakened jet; Holton and Mass (1976)). In
this paper, we use TPT to connect short-term weather fore-
cast statistics, encoded by the committor and lead time, to
the long-term climatology of SSW events, including their
frequency, duration, and the distribution of pathways en-
coded by the probability current: the average tendency of
the system conditioned on the occurrence of an SSW. By
visualizing the probability current, we quantitatively as-
sess the interaction between wave disturbances and zonal
wind anomalies, and the extent to which they are uniquely
associated with an SSW. TPT gives information about the
variability of these processes, not just their mean behavior.
In particular, we will show differences in the variability
between successive stages of a SSW event. The precondi-
tioning of the polar vortex manifests as a steady, predictable
weakening of the lower-level zonal wind. The latter stage is
an abrupt burst of heat flux and collapse of zonal wind that
is much more variable in its timing and intensity. These
are only a few deliverables of TPT, which can be adapted
to probe many other weather phenomena.

Along with the TPT framework, we also advance an
alternative computational strategy to direct numerical sim-
ulation (DNS), in which a model is integrated for a long
time to produce many extreme events. In this paper, as in
Finkel et al. (2021), we instead simulate many, short trajec-
tories in parallel, and afterward combine information from
all of them to compute rare event statistics without ever ob-
serving a complete event. (We use “DNS” to mean a single-
threaded integration of a model, as opposed to a parallel
integration from many initial conditions. This departs from
the computational fluid dynamics usage, where it means
“without subgrid closure”.) While the fundamental strat-
egy is the same as in Finkel et al. (2021), a full TPT analysis
additionally requires backward-in-time forecasts to recover

steady-state statistics from short-trajectories. The particu-
lar approach we use was introduced in Thiede et al. (2019)
and Strahan et al. (2021) and extends work in the bio-
physics community over the last decade on approaches to
analyze long timescale phenomena using short simulated
trajectories (e.g., Jayachandran et al. 2006; Chodera and
Noé 2014, and references therein). In particular, Noé et al.
(2009b) combine an approach using short simulated trajec-
tories similar to the one employed in this paper with TPT
to study a protein folding event.

This paper is organized as follows. In section 2 we briefly
summarize the dynamical model under study. In section
3, we visualize the evolution of SSW events through the
probability current, and compare to the minimum action
method. The resulting physical insight will motivate the
more technical section 4, where we outline the compu-
tational approach, and the more thorough supplementary
document. We assess future possibilities and conclude in
section 5.

2. Model description

We use exactly the same prototype model for SSW events
as analyzed in Finkel et al. (2021). We review the key
features of the model here, but direct the reader to section
2b of Finkel et al. (2021) for more details.

Holton and Mass (1976) developed a minimal model
for the variability of the winter stratospheric polar vortex,
capturing the wave-mean flow interactions behind sudden
stratospheric warming events. The model’s prognostic vari-
ables consist of a zonally averaged zonal wind u(y, z,¢) and
a perturbation geostrophic streamfunction ¥’(x,y,z,t) on
a B-plane channel with a central latitude of 6 = 60°N and
a meridional extent of 60°N. & and i’ are projected onto a
single zonal wavenumber k =2/(a cos8) and a meridional
wavenumber £ = 3/a:

u(y,z,t) =U(z,1)sin({y) (1
U (x,y,2,t) = Re{¥(z,1)e**} e?/?H sin(¢y), (2)

where a = 6370 km ~ the radius of Earth, and H =7 km
is the scale height. U (the mean flow) and ¥ (a complex-
valued wave amplitude) evolve according to the projected
primitive equations and the linearized quasi-geostrophic
potential vorticity (QGPV) equation. The notation follows
Christiansen (2000).

We use the same constant parameters and boundary con-
ditions as Finkel et al. (2021), which give rise to two stable
equilibria: aradiative equilibrium-like state, denoted a, and
adisturbed state b, in which upward propagating stationary
waves flux momentum down to the lower boundary, weak-
ening zonal winds. Figure 1(a,b) depicts the zonal wind
and streamfunction of these two equilibria. SSW events
in this model are abrupt transitions from the region near
a to the region near b. If a strong wave from below hap-
pens to catch the stratospheric vortex in a “vulnerable”



configuration—e.g., measured by an index of refraction
(Charney and Drazin 1961; Yoden 1987)—then a burst of
wave activity can propagate upward, ripping apart the po-
lar vortex and causing zonal wind to collapse. With certain
parameters, the vortex can get stuck in repeated “vacilla-
tion cycles”, in which the vortex begins to restore with the
help of radiative forcing, only to be undermined quickly
by the wave. The situation of two well-separated equilibria
is highly idealized, and not a generic feature of climate
phenomena; this system, with these parameters, serves to
demonstrate qualitative features of SSW, not represent the
real stratosphere quantitatively. It also gives a clear demon-
stration of our quite general method. We refer the reader
to Holton and Mass (1976); Yoden (1987); Christiansen
(2000); and Finkel et al. (2021) for complete model speci-
fication.

After discretizing to 27 vertical levels, we end up with a
state space with a dimension of d =3 x (27 -2) =75, with
a state vector

X(t):[Re{‘P(t)},Im{‘P(t)},U(t) eR” (3

each of the three entries representing a vector with 25
discrete altitudes. We thus obtain a system of 75 ODEs,
X(1) = v(X(¢)). We furthermore perturb the system by
stochastic forcing to represent unresolved processes such
as gravity waves, an idea originally put forward by Birner
and Williams (2008) and used more recently by Esler and
Mester (2019). It could also represent model error, e.g.,
the effects of smaller-scale waves that have been truncated.
The forcing is white in time, giving an Itd diffusion

dX(t) =v(X(2))dt+0o(X(1)) dW (1) @)

where W(¢) is an m-dimensional white-noise process, and
o € R¥™ is a matrix specifying the spatial structure of the
noise. We use the exact same form of noise as in Finkel
et al. (2021), and also explain it here for reference. At each
timestep 6t = 0.005 days, after incrementing the full system
by 6X =v(X)d¢, we additionally increment the zonal wind
profile by

6U(z) =0y an sin
k=0

(k+1)n < ]«/E (5)
2 Ztop

where oy =1 m s} day‘l/z, whose units reflect

the quadratic variation of Brownian motion (e.g., Ok-
sendal 2003). The numerical scheme is known as Euler-
Maruyama (e.g., Pavliotis 2014, ch. 5). The vertical coor-
dinate z ranges from O at the bottom of the domain (the
tropopause) to 70 km at the top of the domain. Equation (5)
determines the matrix o in (4). This noise is smooth in
space, consisting of m = 2 Fourier modes in the vertical.
The specific choice of stochastic forcing does affect the
transition path statistics, but our method can be applied to
any stochastic forcing.

3

A transition path is defined as an unbroken segment, or
trajectory, of the system that begins in a region A of state
space (a neighborhood of a) and travels to another region B
(a neighborhood of b) without returning to A. As in Finkel
et al. (2021), we define A and B based on the zonal-mean
zonal wind at z = 30 km:

A={xeR?:U(30km)(x) > U(30 km)(a) = 53.8 m/s}
(6)

B={xeR?:U(30 km)(x) < U(30 km)(b) = 1.75 m/s}
(7N

A SSW event is then a transition from A to B, while the
reverse, from B to A, represents the recovery of the vortex.
The definition of B modifies the widely used definition of
Charlton and Polvani (2007) in two ways. First, we use
zonal wind at 30 km above the tropopause (in log-pressure
coordinates, which is roughly twice as high as the 10 hPa
standard) because 30 km is where the zonal wind profile
of b reaches a minimum, and Christiansen (2000) used
this same coordinate when studying the same model. We
also modify the zonal wind thresholds order to ensure that
a€ A and b € B. Our method could easily adapt to other
definitions—bistability is not a requirement for doing TPT
analysis—but the bistability in this model makes for a clear
demonstration.

3. Transition path ensemble

Every SSW event, or transition path, is a sample from a
high-dimensional distribution called the transition path en-
semble, which refers to the infinite collection of paths one
would obtain by running the model forever. We will first
give an account of the transition path ensemble based on
storylines of the few individual events shown Fig. 2. Subse-
quently, we will present the TPT analysis, which describes
the distribution as a whole using a specific collection of
functions including probability densities, committors, and
currents.

a. SSW storylines

Fig. 1c shows a 3000-day model integration in a two-
dimensional subspace consisting of zonal wind U(30 km)
and vertically integrated eddy meridional heat flux, which
is abbreviated IHF (integrated heat flux) and defined as

30 km .
IHF(30 km) = / e HVITI () dz (®)
0

IHF quantifies the heat being advected into the polar region
associated with the sudden warming. In the Holton-Mass
model, the integrand takes the form
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Fic. 1. The two stable equilibria of the Holton-Mass model. (a) Zonal-mean zonal wind U (z) and (b) perturbation streamfunction ¢’ (z),
with contour spacing of 1.5x 107 m?/s. Blue indicates the strong vortex equilibrium, a, and red indicates the weak vortex equilibrium, b, as in
Eq. (6). (c) A 3000-day model integration in the subspace of IHF(30 km) and U (30 km). IHF(30 km) = the heat flux integrated from 0 to 30 km;
see text for definition. The 3000-day integration contains two SSW events (transitions from A — B, in orange) and two recovery events (transitions
from B — A, in green). A is the region above a, and B is the region below b, both delineated by horizontal lines. The figure is similar to Fig. 1 of

Finkel et al. (2021).

where R is the ideal gas constant for dry air, and ¢ is the
phase of W. Hence the heat flux is related to the amplitude
and phase tilt of the waves, both of which rise significantly
during a SSW event. In Fig. lc, the fixed point b has more
than twice the IHF of a, and the A — B transitions (orange
segments) begin with a simultaneous decrease in U and
increase in IHF. The B — A transitions (green segments)
do not retrace the same route backward, but rather linger

in the vicinity of B before gaining zonal wind strength and
decreasing in IHF, which even dips slightly negative in the
late stages of vortex recovery.

The same two variables, U and IHF, are plotted over
time in Fig. 2(a,c), with transition paths highlighted in
the same colors. The neighborhoods A and B are clearly
metastable: the system tends to linger in one of the regions
for an extended period before quickly switching to the
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Fic. 2. Bistable time series. (a) Zonal wind at 30 km over time, with A — B transitions (SSWs) highlighted in orange and B — A transitions
highlighted in green. (b) Conditional probability distributions of each of the four phases. (c-d) Same as a-b but with integrated heat flux up to 30
km plotted instead of zonal wind at 30 km. Blue and red lines show the position of the two fixed points, a and b, along these two observables.

other. We can also see bistability by looking at the steady-
state probability density, denoted m(x), which is plotted
as black curves in Fig. 2(b,d). The curve is bimodal over
U(30 km). Over IHF(30 km), (x) is sharply peaked over
A but low and flat over B, reflecting persistent fluctuations,
the “vacillation cycles” of Holton and Mass (1976), in the
weak-vortex regime.

We can decompose the distribution more explicitly into
four separate “phases” induced by the presence of sets A
and B. (i) In the A — B phase, marked by orange, the
vortex is breaking down, en route from A to B. (ii) In the
B — A phase, marked by green, the vortex is recovering
from the vacillating regime back to the radiatively driven
regime. (iii) In the A — A phase, the vortex is strong and
remaining strong for the time being, either inside set A or
taking a brief excursion before returning back to A. (iv)
In the B — B phase, the vortex is weak, caught in ongo-
ing vacillation cycles in the vicinity of B. We denote the
corresponding probability densities as m4p, Tpa, Ta4, and
npp, and plot them in Fig. 2(b,d) along with the overall

density m. Concretely, m4p can be obtained from DNS by
running a long simulation, extracting only the A — B tran-
sition paths, and plotting a histogram of those states. The
other phases are obtained analogously. (The supplement
explains the alternative short-trajectory computation.) The
two peaks in 7(x), over both observables U(30 km) and
IHF(30 km), are seen to come from two unimodal distri-
butions, m44 and 7. In both panels (b) and (d) the peak
over A is narrow and tall compared to the low, wide peak
over B, indicating a higher degree of variability associated
with vacillation cycles.

When the system is en route from A to B, we say it
is (AB)-reactive, using a term from chemistry literature
where the passage from A (reactant) to B (product) models
a chemical reaction. Therefore we refer to map and g
as (AB and BA)-reactive densities, which reveal structure
hidden from view within the sparsely-populated region be-
tween A and B. Along U(30 km), map is peaked near A
and falls off rapidly toward B, suggesting that transition
paths spend much of their time slowly crawling away from
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A before speeding up later on. mp4 has two peaks in the
transition region, suggesting that the system takes a long
time to escape from B, and also a long time to re-enter A.
This asymmetry is not so clear over the observable IHF(30
km), in which m4p and 754 look quite similar, underscor-
ing the need to examine multiple subspaces to distinguish
the phases.

The two events in Figs. 1c and 2(a,b) are only samples
from the full transition path ensemble. Any small sample
of events cannot fully represent the whole ensemble of
transition paths (for example, in the real world, SSWs have
two distinct types: split and displacement). How should we
describe this complicated ensemble faithfully? The distri-
butions m4p and mp4 tell us where transition paths tend
to linger, on average, but not much about their detailed
movement through state space. A standard approach is
to average together multiple events to obtain a compos-
ite evolution, which can reveal important features of SSW
climatology (e.g., Charlton and Polvani 2007; Albers and
Birner 2014; Mitchell et al. 2011). However, lining up
multiple time series with different durations requires some
arbitrary choices. Conventionally, the “central date” of the
warming—when zonal wind first reverses—is used as a
reference point, but this may obscure the initial seeds of
SSW that happen at different times in advance.

The issue is illustrated in Fig. 3. Panel (a) shows zonal
wind over time for 300 observed transition events leading
up the warming. Three of these paths are colored, only in
between the last-exit time from A (denoted 7)) and the
first-entrance time to B (denoted Tg), to illustrate some
of the variability between transition paths. The red curve
sinks steadily downward until accelerating into a SSW,
while the black curve spends a long time trapped in a par-
tially weakened vortex state before its ultimate decline. The
cyan pathway does something in between. The remaining
gray trajectories include several deep dives and partial re-
coveries of zonal wind before ultimately descending into
B. Panel (b) shows the composite evolution of these 300
trajectories: at every point in time, the black curve shows
the median, while the three red envelopes show the middle
20th, 50th, and 90th percentile ranges. (We include in this
average the timeseries that have not yet left set A, although
the definitions to follow will exclude these early segments
from the analysis). The composite evolution successfully
captures the sharp nosedive in zonal wind at the end of
the transition pathway, but misses the large meanders that
some paths, including the black path, go through before
the precipitous decline. A comprehensive account of the
transition path ensemble should include the stagnations as
well. In order to capture these initial stages, we have de-
fined SSW in such a way that the full process takes ~ 80
days, much longer than the ~ 10 days time horizon that
traditionally comprises a SSW event. This model, like the
true atmosphere, sees the most dramatic zonal wind col-
lapse only in the last few days; however, we will show that
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FiG. 3. SSW ensemble and composites. (a) 100 SSW realizations in
gray in terms of U (30 km), aligned by the central date of the warming
when zonal wind dips below 1.75 m/s. Three of the realizations are
colored in between their last-exit time from A (‘r;‘) and their next-
hitting time to B (7},). (b) Composite evolution of U (30 km). The black
curve shows the pointwise median, and the three red-orange envelopes
show the middle 20, 50, and 90 percentile ranges.

most of the probabilistic progress occurs during the longer
preceding “preconditioning” stage.

The TPT approach averages trajectories together in a
different way, aligning them by their position in state space
rather than by the time until SSW (which is itself a random
variable). This new kind of composite evolution is the
essence of the probability current, which highlights the
sequence of events that must happen between A and B
regardless of the time horizon. In the rest of this section,
we define and visualize probability currents, starting with
their basic ingredients: committor functions.

b. Committors, densities, and currents

Let us fix an initial condition X(#y) = x with a vortex
that is neither strong nor fully broken down, so x ¢ AU B.



X(#) will soon evolve into either A or B, since both are
attractive. The probability of hitting B first is called the
forward committor (to B):

a5 (x) = Px{X(7} (%)) € B} (10)

where the subscript x denotes a conditional probability
given X(t9) = x, and ¢ (to) is the first hitting time after to
to a set S ¢ R%:

74 (t9) = min{t > 19 : X(¢) € S}. (11)
Here, S is the union of A and B, i.e., the trajectory has
returned to a metastable state. The probability of hit-
ting A first instead—the “forward committor to A”—is
g (x) =1 -¢g%(x). Unless specified otherwise, we call
qg the forward committor, as the SSW event is our main
interest. Committors are deterministic functions of state
space involving ensemble averages of X(#), whereas hit-
ting times are random variables depending on the real-
ization of X(#). Our system is autonomous, with no ex-
ternal time-dependent forcing, so we can set 7o = 0 and
drop the argument from 73 . without loss of generality.
The autonomous assumption can be relaxed, either by aug-
menting X with a periodic variable for time (e.g., to in-
clude the seasonal cycle) or by augmenting A and B to
include initial and terminal times (e.g., to examine climate
change effects). Periodic- and finite-time TPT has been
presented in Helfmann et al. (2020), and we plan to utilize
this framework in a forthcoming paper using state-of-the-
art ensemble forecasts. As a conceptual demonstration, the
autonomous Holton-Mass model makes for a clearer expo-
sition.

While the forward committor is a central quantity for
forecasting, it does not distinguish the A — B phase from
the B — B phase, i.e., it tells us nothing about the past
of X(¢) for ¢ < ty. For this we also need to introduce the
backward committor (to A):

g4 (x) = Px{X(7y,5(10)) € A} 12)
where 7 (7o) is the most recent hitting time
7 (to) = max{r < 1o : X(1) € S} (13)

The backward-in-time probabilities refer specifically to the
process X(t) at equilibrium, allowing us once again to set
to = 0. The backward committor to B is g (x) = 1-¢g,(X).
Again, the phrase “backward committor” will refer to g7,
unless stated otherwise.

The forward and backward committors are shown in
Fig. 4(a,b). In this and later figures, the white regions of
state space have insignificant probability. Note that g7, and
q, have very different contour structures, a sign of irre-
versible behavior (in a stochastic system with detailed bal-
ance, i.e., a reversible system, g, = 1 - qz). Both ‘12 and
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FiG. 4. Committors. (a) Forward committor g7, (x), the probability
to hit B next starting from x, and (b) backward committor 95 (x), the
probability to have come from A last given the current state x. The
committors are projected on a two-dimensional space (IHF(30 km),U (30
km)).

q, are large in the upper-right flank of state space, mean-
ing that whenever medium-strength zonal wind and large
IHF are observed together, chances are high that the sys-
tem both came from A and will next hit B. In other words,
a SSW is underway. Compare to the middle-left flank of
state space, where q}_f} is large but 94 is small: there, the
system is likely headed toward B, from B, which does not
count as a SSW event.

With committor functions, we can now formally define
the transition probability density map (and mpa as well,
just by swapping A and B in the formulas to follow).

Tan(x) = in(xm(xm;(x) (14)
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where Z4p is a normalizing constant such that the right-
hand side integrates to one.

Each probability density (7, map, 7B, €tc.) is associ-
ated with a probability current (J, Jas, JpB, etc.). The
steady-state current J(x) is a vector field that describes
the probability mass flux through x. It is related to the de-
terministic flow X (7) = v(X(¢)), but differs by a factor of
7(x) to account for density variations and a diffusion term
to account for the stochastic perturbations. For a diffusion
process of the form (4), these currents have the explicit
form

J(x)=nv-V-(Dn),
Jas(X) = q1q5T+7D[qVah - a5V a3).

5)
(16)

where the diffusion matrix D(x) = %O'(X)O'(X)T, and V
represents the gradient operator over state space. One can
substitute A and B for other symbols to single out the
phase of interest. Dependence on x has been suppressed
throughout. Unlike the deterministic flow field v(x), J(x)
is divergence-free, reflecting the steady-state property that
every region of state space has a constant probability mass.
(See Vanden-Eijnden (2006) and Metzner et al. (2006) for a
thorough mathematical treatment, or Finkel et al. (2020) for
an application to a simpler SSW model.) Fig. 5a overlays
J(x) (black arrows) atop m(x) (orange logarithmic color
scale). The vector field lives in R7>, but we have projected
it into two dimensions using a visualization procedure due
to Strahan et al. (2021) and described in section 2 of the
supplement. The two black curves in Fig. 2 are the two
marginals of the orange density in Fig. 5. The two proba-
bility peaks around A and B are seen as dark blobs, each
of which is surrounded by strong probability currents and
separated by a region of weaker current.

To understand this vector field, we make a fluid-
dynamical analogy. If A and B are two coherent eddies
in a body of water, a tracer particle spends most of its
time trapped in one of the two, but is occasionally ejected
from one eddy and entrained in the other. The equilibrium
current is thus dominated by the velocity fields of the two
eddies, but the smaller filaments that connect them are re-
sponsible for occasional transition events, which of course
are our primary interest. To single out the dynamics of each
phase, we decompose J(x) just as we decomposed 7(x),
conditioning on the past and future of X(¢) as it passes
through x. J 45 (x), shown in Fig. 5b, is the average flow of
trajectories moving from A to B through x; J 44 (X), shown
in Fig. 5S¢, is the flow from A back to A through x, etc. The
background colors are the probability densities for the cor-
responding phase. For example, panel (c) shows m4p(X),
the probability of finding a trajectory at x given that it is
en route from A to B.

By visualizing transition pathways as static vector fields
in state space, we switch from a Lagrangian to an Eulerian

reference frame and fulfill our promise to “align transi-
tion paths by their position in state space.” The averaging
choices in Fig. 3 were challenging because each “particle”
(ensemble member) approaches B through a different path-
way. The probability currents protray the global behavior
of transitions, as opposed to “case studies” provided by
individual trajectories.

Let us examine the characteristics of each phase. The
current J44 is disorderly and suggests that typical fluc-
tuations around A are usually extinguished swiftly by the
restoring force of radiative equilibrium. On the other hand,
Jpp is a highly organized “eddy” around b. This reflects
the vacillation cycles seen in the time series of Fig. 2,
and offers a dynamic perspective not available from the
stationary distribution 7p(x). Each cycle consists of a
slow buildup of zonal wind driven by radiative cooling,
wave enhancement allowed by the growing PV gradient,
and subsequent collapse of zonal wind. Mathematically,
the linearized system near b is stable with complex eigen-
values; b is an attracting fixed point, and without noise
the oscillations would die out eventually. Stochastic forc-
ing injects enough energy to excite the system off of the
fixed point, and a nearby limit cycle beyond a Hopf bifurca-
tion directs this energy into sustained oscillations (Yoden
1987).

Comparing Fig. 5(a,b,e), we see that the steady-state cur-
rent is approximately the sum of J 44 and J g g, two coherent
eddies separated by a barrier at U(30 km) ~ 35 m/s. The
occasional A — B transition breaches this barrier in a way
described by J4p in Fig. 5¢c. Jap emerges from set A with
gradually increasing IHF and decreasing zonal wind. At
first J4p matches approximately with J44, extending out
of the lower-right corner of A, but at U(30 km) = 40 m/s,
Jap separates decisively into its own unique stream. Down
to U(30 km) ~ 30 m/s, Jap remains strong and localized
in a narrow tube going downward and rightward. Subse-
quently, J 4 p weakens and spreads out as it turns downward
for its final descent into B, indicating that pathways tend to
meander more widely through this late stage of a SSW in
the Holton-Mass system.

To corroborate the representation of transition pathways
by Jap, we have also plotted five realized transition paths
from the reference simulation in blue. True to the vector
field, the transition paths stay tightly clustered together as
zonal wind slackens and the streamfunction begins to tilt,
but scatter widely when they dip below U(30 km) ~ 30 m/s,
and enter B with a range of IHF values between 2 x 10*
and 5x 10* K-m%/s.

As a second point of comparison, we have also plot-
ted the minimum-action pathways (both from A — B and
B — A) with thick cyan lines, representing the most likely
transition path in the low-noise limit (e.g., Freidlin and
Wentzell 1970; E et al. 2004; Forgoston and Moore 2018).
The pathway solves an optimization problem, deviating
as minimally as possible from the deterministic dynamics
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Fic. 5. Densities and currents. (a) shows the equilibrium density 7(x) and equilibrium current J(x). (b-e) show the reactive densities and
currents for A — A, A— B, B — A, and B — B transitions, respectively. For example, (c) shows the reactive current J 4 (x) overlaid on the
reactive 7w g (X), illustrating the most common pathways of SSW trajectories from the strong to weak vortex state. Thick cyan curves in (c) and (d)
mark the minimum-action pathways from A — B and B — A, respectively, while thin blue curves show a few sampled realized transition pathways.

Gray dots are data points inside states A and B.

while still bridging the gap all the way from A to B. We
use sequential quadratic programming to approximate the
minimum-action path following Plotkin et al. (2019), and
describe our procedure further in section 3 of the supple-
ment. (In fact we solve for the minimum-action pathway
almost all the way to the fixed point b; up to the boundary
of B, this makes no difference.) As the stochastic forc-
ing shrinks to zero, we expect J 45 to collapse into a single
streamline following the minimum-action path (but becom-

ing increasingly unlikely as we approach this limit). The
finite-noise transition path ensemble, however, departs sig-
nificantly from it. In the initial stages of transition in Fig.
S5c, the minimum-action path tracks right down the center
of Jap, suggesting this feature is stable with noise. At the
end of the process, widening of current streamlines makes
it impossible for the minimum-action path to represent the

full ensemble meaningfully.
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After a SSW event and ensuing vacillation cycles, the
vortex eventually recovers, returning from B back to A,
which is encoded by the current J 4 in Fig. 5d. The B — A
current is very different from areversed A — B current. Af-
ter many loops around B, J g4 emerges upward out of B just
as in any other vacillation cycle, with a partial restoration of
wind. The current then bifurcates: one branch continues its
upward creep in zonal wind while reversing course in the
IHF direction, eventually rebuilding a strong enough polar
vortex to inhibit wave propagation and allowing radiative
relaxation to take over, drawing it back into A. Meanwhile,
the other branch of current continues to track with Jgp
halfway through the wave amplification phase, as if about
to execute another loop around b. But Jp4 stalls in the
middle of the wave amplification phase, near IHF(30 km)
=3 x 10* K-m?/s. Where does the current go from there?
Fig. 5(d,e) indicates that the eddy is centered slightly above
the top of B, allowing some room for small vacillation cy-
cles to proceed without technically re-entering B. This is
the likely fate of some trajectories along the second branch
of Jpa, which finally achieve “escape velocity” the second
time around.

The minimum-action path from B to A captures some of
the tortuous nature of this transition, with several setbacks
and subsequent regrouping events. However, it differs sig-
nificantly from Jp 4 overall. Because Jp 4 flows over a wide
channel, any single path (even the minimum-action path)
cannot reasonably be expected to represent the ensemble
meaningfully.

c. Stages of a SSW from probability current

We can analyze SSW progression more systematically
and quantitatively using the following property of reactive
currents. Let C be a closed hypersurface in R¢ which en-
closes A and is disjoint with B; we call this a dividing
surface. Then we have

jg Jag -ndo = Transition rate (17)
c

where n is an outward unit normal from C, o is a surface
element, and the transition rate is the average number of
A — B transitions (SSW events) per unit time, or equiv-
alently the inverse return period. The stochastic Holton-
Mass model has a rate of ~ (1700 days)~!, which changes
with parameters such as noise strength. The integral rela-
tionship (17) holds for any dividing surface, implying that
the current is divergence-free outside of A and B, but has
a source in A and a sink in B (vice versa for Jg4). The
integrand J 4 - n, which we will henceforth call the J45-
flux density (not to be confused with heat flux or IHF) can
be interpreted as a quasi-probability density, which is nor-
malized to integrate to a constant (the transition rate) but
may take on negative values for some choices of dividing
surfaces. Because the number of A — B transitions per unit

time must equal the number of B — A transitions per unit
time, Eq. (17) must also hold when J 45 is replaced by Jpa
and n is replaced by —n. The reactive current essentially
decomposes the rate among a continuum of possible path-
ways, which is much more dynamically insightful than the
numerical value of the rate itself.

We visualize the progression of SSW events as J 4p-flux
densities through dividing surfaces, for two different fam-
ilies of dividing surfaces (zonal wind strengths and com-
mittor levels) to illustrate different aspects of the process.
We will then quantify how SSW progresses over time.

1) SURFACES OF CONSTANT ZONAL WIND

The simplest choice of dividing surfaces is a series of
hyperplanes with constant U(30 km), represented as hor-
izontal black lines in Fig. 5(b-e). To get from A to B, a
trajectory must pass downward once through each thresh-
old. It may also cross down, then up, then down; or three
times down and two times up, etc., as long as the net num-
ber of downward crossings is one for each surface. The
Jap-flux density element J5(X) - n(x) do(x) can be in-
terpreted as the long-term average number of net crossings
through the surface at x. Note that in the A — B direc-
tion, n points in the direction of negative U(30 km), i.e.,
n=-VU(30 km)/||VU(30 km)||.

Fig. 6 shows the J4p-flux densities (a) and Jga-flux
densities (b) across each surface. The horizontal axis is
IHF(30 km), as in Fig. 5, which instantiates the J4p-flux
density element as

VU(30 km)

JAB.nd(TZJAB'(_m

) d[IHF(30 km)]

Here, the differential J[IHF(30 km)] is shorthand for
[ dxy ... [ dxs3d[THF(30 km)], where x1,...,x73 are the
73 dimensions of state space orthogonal to both the IHF(30
km) and the U(30 km) axes. Accordingly, the vertical axis
of Fig. 6 has the units needed to normalize the integrals
to a transition rate in days~!. At the first A — B threshold
U((30 km) =47.3 m/s, the flux distribution has a tall, nar-
row, negative spike, where Jap points downward across
the surface. There is also a small positive spike to the left
due to a small amount of backflow where transition paths
temporarily regain a bit of the lost zonal wind—not enough
to re-enter A—before weakening again. This backflow cor-
responds to the small wiggles early in the black and cyan
time series in Fig. 3. Moving from blue to red curves, as
zonal wind drops further, we see the negative spike widen
and slightly flatten, while the positive spike shrinks and
disappears. By the last threshold U(30 km) = 8.3 m/s, the
Jap-flux density appears entirely negative, consistent with
the sharp downturn into B seen in both Figs. 3 and Sc.
It also covers a wider range of integrated heat flux, con-
sistent with the weaker current magnitude pointing into
B in Fig. 3c. The Jp4-flux density somewhat mirrors the



Jap-flux density, but with a larger backflow spike relative
to the forward flow: in the early stages of vortex recov-
ery (red and orange curves in panel (b)), a strengthening
zonal wind at low values of IHF is accompanied by weak-
ening zonal wind at higher value of IHF. This is consistent
with the winding, branching character of J4p in Fig. 5d,
which inherits some clockwise circulation from Jgg. In
other words, the early B — A transition stages experience
residual vacillation cycles, which ultimately dampen and
die by the time zonal wind has reached 47.3 m/s (there is no
noticeable negative dip in the dark blue curve in Fig. 6b).

These flux densities trace out a simpler version of the
“transition tubes” defined in Vanden-Eijnden (2006). The
distributions cannot be interpreted as the path of a sin-
gle event, but rather as the flow of SSW “traffic” through
a sequence of thresholds, indicating the most frequently
traveled paths. Another important caveat is that a single-
signed J 4p-flux density (such as the red curve in Fig. 6a)
does not imply strictly monotonic changes in zonal wind
across that surface: it only means that the backflow, if
present, is not systematically displaced from the forward
flow along the THF axis, as it is in the red curve in panel (b).
However, a different choice of horizontal axis might reveal
more coherent cyclical behavior. In general, reactive cur-
rents generally contain much more information that can be
queried by slicing it along in different dimensions, which
should be chosen with some physical intuition.

2) SURFACES OF CONSTANT COMMITTOR

Zonal wind, the defining coordinate for A and B, is an
obvious measure of progress which we have used in Fig. 6.
However, in some ways it is not the most natural. First, the
presence of backflow, while it does reveal some interest-
ing dynamics of transition paths, suggests that a particular
zonal wind level might be associated with forward or back-
ward progress depending on other variables. Second, by
the time a typical transition path reaches the halfway point
of U(30 km) = 25 m/s, its committor probability has risen
to nearly 100% (cf. Figs. 4 and 5c; “typical” means along
the main channel of J 4 g). The subsequent collapse of zonal
wind is locked in by that point. The committor itself is a
more balanced metric of progress toward B, and can be
used the same way to find transition routes. A committor
level set {x: g5 (x) = qo}, i.e., all states with equal like-
lihood go of SSW, is a dividing surface just like a level
set of U, and thus supports a J4p-flux density similar to
those in Fig. 6. We will see that this flux density is almost
uniformly positive.

In Fig. 7, we plot a larger collection of J4p-flux densi-
ties, represented by gray histograms, across 15 level sets of
the committor. The J4p-flux density elements for panels
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Fic. 6. J o p-flux density (a) and J g 5 -flux density (b) as a function
of IHF (30 km), over four different level sets of U (30 km). These cross
sections of the reactive current from A to B and B to A illustrate the
mean direction of trajectories crossing different zonal wind thresholds
as a function the IHF. For an SSW (a), the progression marches from
high winds (blue curves) to low winds (red) with increasing mean and
variabilty of the IHF, while for the recovery of the vortex (b), the main
progresssion is up toward higher wind, albeit with more substantial
cycling down at higher values of IHF. Each density should have the
same integral (in absolute value), equal to the rate. Due to numerical
error, the integrals can vary and the rate is calculated by an averaging
procedure (see section 3 of the supplement). For visual clarity, we have
normalized each curve to have the same integral. To integrate to a rate,
in days", the vertical axis must have units of [K~m2/s]"days’1. This
unit depends on the orientation of the dividing surface in state space, as
well as the coordinates along that surface chosen for projection.
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We also display the minimum-action path with a dashed
black curve for comparison. Panel (a) confirms that the



12 AMS JOURNAL NAME

(a)

[\S] w [ ul
o o o o
1
/
1
“
I
I
1
1
T
i
1
I
1
1
1
’
A
I
i
B e el
1
/
1
'
1
1

U(30 km) [m/s]

(=]

C

45000

40000

W W
=i
o O
(= =)
(= =]

N
<
(=3
(=1
o

IHF(30 km) [K-m2/s]

10000 ___L_/,"'r'_ _-T

0.2 0.4 0.6 0.8 1.0
+
as

Fic. 7. Minimume-action paths and path distributions. At a series
of level sets in the committor g7, gray histograms indicate the J 4 g-flux
density of (a) zonal wind U (30 km) and (b) integrated heat flux IHF(30
km). Dashed curves show the minimum-action pathway in the same
space. The minimum-action path tracks the mean of the full ensemble
except very near SSW (g, near 1), where the jet breaks down more
rapidly, accompanied by an extreme heat flux. The more extreme nature
of the minimum-action path was also observed in Figure Sc, where it
tracks along the rightmost envelope of more typical trajectories.

zonal wind-committor relationship is nonlinear: approx-
imately half of the total decline in zonal wind happens
after the committor has surpassed 80% probability. The
Jap-flux density widens across U in the late transition
stages, past g3, ~ 0.7. This indicates, somewhat puzzlingly,
that the system may “commit” to B at a range of zonal
wind strengths, even though B itself is defined by a fixed
threshold U(30 km) < 1.75 m/s. Fig. 4a offers some ex-
planation: as the committor increases towards 1, the level
sets become increasingly tilted across this two-dimensional
state space. The last visible level set (the boundary be-
tween dark orange and red) spans the approximate range
Sm/s < U0 km) < 30 m/s, depending on the value of
IHF(30 km) along the horizontal. A large heat flux carries
the promise of imminent SSW by sending waves into the
stratosphere that will deposit enough negative momentum
to surely destroy the vortex, even if the vortex is still per-
sisting for the time being. If heat flux is weak, on the other
hand, zonal wind must also be very weak to ensure the

same degree of SSW certainty. Thus, the spread in zonal
wind is closely tied with the spread in heat flux. This is
consistent with Fig. 7b which shows the integrated heat
flux distribution across each level set of ¢7,. Indeed, the
distribution widens progressively from g, ~ 0.5 until the
end of the path, consistent with the diffusing J4p vector
field and the diverging sample paths in 5c, as well as the
broadening flux distributions in Fig. 6a. An interesting dif-
ference between the flux distributions and minimum-action
path is that the latter decisively chooses the high-heat flux
route, far outstripping the bulk of the flux distribution in
Fig. 7b and hugging the right end of state space in Fig. Sc.
We speculate that because stochastic forcing only acts on
zonal wind, rather than the streamfunction (which deter-
mines heat flux), the minimum-action path recruits the heat
flux mechanism to do the “heavy lifting” of decelerating
the zonal wind, thereby achieving SSW with a lower cost.
An interesting future experiment would be to vary the form
of stochasticity (5) and explore the consequences for flux
distributions and minimum-action paths. TPT may thus
offer an important rare event-oriented calibration tool for
stochastic parameterization of climate models.

We have so far focused on observables at a fixed alti-
tude of z =30 km (or integrated up to 30 km), but the
vertical structure of zonal wind and heat flux is essential
to understand the physical processes of SSW onset. Ev-
ery altitude z has a separate observable U(z), with its own
Jap-fluxdensity Jap-VU(2)/||VU(2)|| of the same kind as
Figs. 6 and 7. We visualize this z-indexed family of distri-
butions in Fig. 8a by plotting their medians (solid curves)
as functions of z, for five different committor level sets
from O to 1. The background shading covers the interquar-
tile range (25th-75th percentiles) of the J4p-flux density.
There is essentially zero “backflow” across these surfaces,
so the J 4p-flux densities are ordinary nonnegative proba-
bility densities. Blue and red dashed curves represent the
fixed points a and b. Fig. 8b shows the same construction,
but with z-dependent meridional heat flux v/T’(z) as the
independent variable. Together, these profiles give an idea
of the joint evolution of propagating waves and weakening
mean flow during the course of SSW.

As the committor increases from 0 to 0.6 (blue to yel-
low), the zonal wind profile slackens most noticeably at a
low altitude range of 10-20 km, and the interquartile range
remains narrow, suggesting that transitions are constrained
to play out along a range of pathways with low variability.
At the same time, meridional heat flux develops a positive
bulge at the same low altitude range, indicating some up-
ward flux of wave activity emanating from the troposphere.
Later, as the committor increases to 1.0 (yellow to red), the
wind profile stagnates at altitudes below 20 km, and above
that continues weakening gradually. Most noticeably, the
variability, both in zonal wind and heat flux, increases at
higher altitudes of 30-50 km. At qg =0.95, the distribution
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Fic. 8. Typical transition states and variability. For a sequence
of five committor ranges, we plot (a) the zonal wind profile and (b)
the meridional heat flux profile that is most typical of that committor
range in the sense of reactive current flux density. Shading represents the
25th-75th percentile range of the flux distribution. Blue and red dashed
curves represent the profiles for the fixed points a and b, respectively. The
widening of the distribution of both winds and IHF at high committor
values (close to the SSW) highlights the diversity in late stage events
which is lost in a composite approach (as in Figure 3) that pins all events
together by the point of the vortex reversal. Even at a committor value
of 0.95, the vortex is still largely intact above 15 km, emphasizing the
importance of preconditioning the low level winds.)

of zonal wind at high altitudes begins to skew sharply to-
ward weak winds. Meanwhile, the distribution of heat flux
profiles grows and widens, and the bulge moves slightly
upward toward 30 km. This is consistent with the broad-
ening of J4p in IHF space in the final transition stages
(Fig. 5¢), and indicates a continued upward flow of wave
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activity. A slight change in zonal wind belies a substantial
increase in SSW probability, which will eventually bring
about an abrupt breakdown and explosion of variability in
zonal wind.

3) EVOLUTION OVER TIME

We have now measured SSW progress by two differ-
ent coordinates, U(30 km) and g}, (x), and visualized its
composite evolution in both spaces. What neither of them
captures directly is time: how long does SSW take to com-
plete, and how long is each stage? We wish to produce a
TPT version of the composite evolution shown in Fig. 3. To
do this, we replace the hitting time 7 (a random variable)
with its conditional expectation, the lead time,

n (%) = Bx[ 73,51 X (T4 p) € B, (20)

in other words, the average time from x to B conditional on
hitting B before A. The composites in Fig. 3b parameterize
the SSW process by 7}, itself, which varies randomly from
path to path, whereas 773, (x) is the average value of 7 over
all possible paths and hence a deterministic function of
state space. We used 7}, as a forecast function in Finkel
etal. (2021), and we display it here in Fig. 9 over the same
two-dimensional subspace, along with several committor
level sets for comparison. 773 (x) is uniformly zero on set
B, increases farther away from B, and becomes undefined
on set A. Fig. 9b gives an idea of how the certainty of
SSW is related to the time until it happens. It turns out
that along transition paths, the committor increases at an
approximately linear rate with respect to time. Both the
flux distributions and the minimum-action path indicate
that the lead time drops by ~8 days for every additional
~10% in the likelihood of SSW. In particular, this means
that the ultimate collapse of zonal wind in Fig. 7 is not
only “sudden” with respect to the committor, but also with
respect to the lead time. The final 20 days of the transition
path (as measured by 7},) corresponds to the final ~ 5% of
probability needed to achieve SSW, from 95% to 100%, and
yet this same interval sees approximately 30 m/s reduction
in zonal wind—the entire second half of its journey from A
to B. This is the sense in which the pre-sudden part of SSW
constitutes most of the probabilistic progress. Dynamically,
it seems that this half-weakened polar vortex has been
accompanied by “irreversible” changes in the flow field,
the Holton-Mass version of the threshold behavior found
in Nakamura et al. (2020).

To visualize the time dependence of transition paths
more directly, we can construct U(30 km) (or any other
observable) as a function of time implicitly by considering
the joint distribution of U(30 km) and 7} across different
committor level sets, according to the Jap-flux density.
The corresponding infinitesimal element is

Vdp ) .
N=—]d d|U30k 21
o (gt |dlrblalvcowm] e
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Fic. 9. Lead time-committor relationship. (a) Background color
shows ng, the expected time to reach B from initial condition x, condi-
tional on hitting B next. Note that the contour structure is very different
from that of the forward committor, whose level sets qg =0.1,0.2,0.5,
0.8, and 0.9 are shown in solid black lines (cf. Fig. 4). Notable differ-
ences are in the light red region where the wind is approximately 20 m/s
and IHF near 10* K- m/s: SSW events rarely occur from these initial
conditions, and are associated with long trajectories (lead time of about
60 days) that often cycle back towards state A before swinging down to
state B. Probability current J 4 g is overlaid, the same as in Fig. Sc. (b)
The distribution of lead time across a series of level sets of the commit-
tor, the same level sets as in Fig. 7.

whose two-dimensional integral is, again, the transition
rate. For a sequence of 30 committor level surfaces, Fig. 10a
shows quantiles of U(30 km) (a) and THF(30 km) (b) vs. the
median lead time 7}, in the horizontal. These “TPT com-
posites” resemble the traditional composite of Fig. 3b. but
differ in several important ways. The traditional composite
narrows toward the end, by construction, since the entrance
to B is defined by a single value of U(30 km). In contrast,
the TPT composite widens toward the end before the final
narrowing: as Fig. 9a demonstrates, the level sets of ¢}, and
n}; closest to B both cover a range of U(30 km) values. The
final collapse of zonal wind, which typically happens in the
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FiG. 10. TPT composite evolution vs. time. For 15 committor level
sets (the same as in Figs. 7 and 9b) we approximate the joint distribution
of (a) lead time and zonal wind, and (b) lead time and integrated heat
flux, according to the flux density of Jap - n through the committor
level surface. The three red-orange envelopes represent the middle 20%,
50%, and 90% percentile ranges. Black curves connect the medians.
Unlike the traditional SSW composite shown in Figure 3, the variability
in trajectories is more uniform in lead time, actually increasing near the
event. This is due to use of the committor as the ordering coordinate,
which aligns paths by the future predictability of an event. The widening
at near 17, = 10 days reflects the diversity of model states when a SSW
is approximately 95% likely to occur, as seen in Figure 8. All of these
states are equally likely to move to an SSW with an expected lead time of
10 days, but there is a distribution of actual lead times which contributes
to the spread in winds and heat flux.

lower-right corner of state space, is so sudden that the lead
time hardly changes, and so inevitable that the committor
hardly changes. Of course, formally nj =0 and g}, = 1 if
and only if U(30 km) < 0, a boundary condition we have
enforced in Fig. 10a (see section 2 of the supplement for
details). From the TPT perspective, however, the process
is essentially complete.

The TPT composite also has a wavy character not cap-
tured by the traditional composite. The individual samples
in Fig. 3a do seem to proceed in pulses of steady downward
progress punctuated by brief, partial recoveries. Because
these partial recoveries are staggered in time between paths,
the traditional composite in Fig. 3b cannot capture them.
However, these wiggles may correspond robustly to var-
ious level sets of committor or lead time, which would



suggest the waviness of the TPT composite is indeed cap-
turing this same phenomenon. Some of the gray transition
paths in Fig. 3 go through even larger oscillations after ap-
proaching close to B, which may correspond to the rapid
expansion of the outer envelope (middle 90 percentile) in
Fig. 10a at 7}, = 30 days. The probability currents in the
lower left corners of Fig. 5(a,d,e) indicate, indeed, that this
region is associated with increasing zonal wind strength,
which of course is only temporary if the trajectory is bound
for B. These partial recoveries may be interpreted as mi-
nor warmings preceding the major warming. Nevertheless,
the individual pathways are only case studies, and their
detailed correspondence with the TPT composite is specu-
lative. A more refined DGA discretization, or a large-scale
time series statistical analysis, would confirm or deny the
robustness of these oscillatory features, but such analysis
is beyond the scope of this paper.

4. Numerical method

The results above can in principle be computed by di-
rect numerical simulation (DNS). To demonstrate that TPT
analysis can scale to more complex models, we have instead
used the dynamical Galerkin approximation (DGA) which
avoids the need to simulate trajectories on the timescale of
the SSW return time.

DGA is detailed in the supplement and in previous pa-
pers (Thiede et al. 2019; Strahan et al. 2021; Finkel et al.
2021), but we briefly sketch the procedure here. The key
observation underpinning DGA is that unknown “forecast
functions” of interest — ¢, (x), ¢, (x), 775 (x), 1(x), etc —
can be expressed as solutions to equations involving only
short-time evolution of X. For example, the committor, q’{g,
solves the equation

¢ (%) = Ex[¢5(X(A)X(0) =x|. x¢AUB
gp(x)=1,xeB and gp(x)=0,x€cA

(22)

for x outside of A and B. In this equation we interpret
evolution of X(#) to stop upon entrance to A or B. The
user-chosen parameter At limits the length of the simulated
trajectories. Crucially, Eq. (22) identifies g, exactly for any
choice of Ar.

To approximately solve Eq. (22) and similar equations
for other quantities of interest, we first generate a data set
by sampling many points X,,(0) from all over state space
according to some sampling measure, u, and then launch-
ing a short trajectory from each one, yielding a data set
{Xu(0):0<1< At}nNzl. This sampling measure, the num-
ber N =3 x 10° trajectories, and the length Ar = 20 days, are
key parameters of the method. The trajectories are signif-
icantly shorter than the typical ~ 80-day duration of SSW.
As in Finkel et al. (2021), the initial conditions are resam-
pled from along (2 x 10° days) control simulation to be uni-
formly distributed on the space (|¥|(30km),U(30km)).
With a more complex (expensive) model we would not
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be able to rely on a long control simulation to seed the
initial points. Optimizing this procedure is, therefore, a
crucial step for future research, and should draw on exist-
ing rare event sampling strategies such as those presented
in Ragone et al. (2018); Webber et al. (2019); Simonnet
et al. (2021); Abbot et al. (2021) and others, perhaps with
a combination of surrogate and high-fidelity models.

After generating the data, we expand unknown functions
of interest in basis sets informed by the data, and then
solve matrix equations for the expansion coefficients. For
the forward committor we write

M
a5~ D wigh)e;(x) (23)
j=1

with analogous expansion coefficients w;(g,) and w; ()
for the backward committor and steady-state density, re-
spectively. There is a wide range of choices for constructing
basis functions, and in fact different bases may be optimal
to compute different quantities of interest. In this work,
we simply use indicator (or characteristic) functions. To
construct the basis sets, we divide state space R4 into a
partition of disjoint sets {S1,...,Sp} and discretize the
continuous-space process X (f) € R” into an index process
S(t) e{1,...,M}, where S(z) = j if X(¢) € §;. The corre-
sponding basis functions are

1 XGSJ'

. (24
0 otherwise.

¢j(x)=1s,(x):= {

The sets {S1,...,Sy } are found by clustering the complete
set of states in our short-trajectory data set using K-means
clustering as implemented in the scikit-learn Python
library (Pedregosa et al. 2011) along with the hierarchical
adjustment described in Finkel et al. (2021), with M = 1500
clusters. The choice of a basis of indicator functions found
by data clustering is borrowed from a well-studied class
of coarse-grained models known as Markov state models
(MSMs) (Noé et al. 2009b; Chodera and Noé 2014), and
with this choice our estimates of the committors and steady-
state density are nearly identical (up to details related to
boundary conditions) to those obtained by the MSM ap-
proach with the same clusters.

The Galerkin method proceeds by inserting the expan-
sion in Eq. (23) into the short-trajectory equation solved
by the quantity of interest (Eq. (22) in the case of ;) and
then integrating both sides against a test function ¢;, also
from the basis. The result is in an M X M linear system.
With an indicator basis as in Eq. (24), the matrix elements
yield a Markov transition probability matrix

Pij =Pu{X(Ar) € S;|X(0) € S;}, i,je{l,....,M}. (25)

where the subscript u indicates that X(0) is drawn from
the sampling measure y, restricted to S;. The matrix entries
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are expectations over both the initial conditions X, (0) and
the final conditions X, (Af) and are estimated by sample
averaging using our short trajectory data set, i.e. by

b X (0) € 5. X0 (An) €5
i #{n: X, (0) € S;} ’

(26)

Given the transition matrix P;;, the committor coeffi-
cient vector obeys a discrete version of Eq. (22):

M
wilgg) =) Pijw;(q5), SiZAUB @7
j=1

wilgh)=1,S:SB and wi(qy) =0, S CA

We have assumed that A, B, and (AU B)° are partitioned
separately, meaning each S; is either completely inside
A, completely inside B, or disjoint from both, which we
ensure in the clustering step. As in Eq. (22), in Eq. (27) we
interperet evolution of X, (#) to be stopped upon entrance
to A or B.

The coeficients of the steady-state density obey another
linear equation:

M
Wi(ﬂ)ZZWj(ﬂ)Pﬁ i=1,...,M (28)
Jj=1

M
ZW]'(T[) =1.
j=1

Note that in this case the equation involves the transpose of
P instead of P itself and does not come with any boundary
conditions.

The backward committor obeys a similar equation
to (27), but with two differences. First, P;; is replaced by

f’ij = %Pﬁ, which represents the process under time
reversal at steady-state. Second, for g, the boundary con-
ditions are flipped from those of g3: wi(g;) =1forS; C A
and w;(q) =0 for §; C B. Because the time-reversed ma-
trix depends on the steady-state density, g, must be solved
after .

The lead time 7} solves a similar, but slightly more
intricate, equation. We postpone that formula to the sup-
plement, where we also provide complete details for the the
derivations presented in this section as well as numerical
validation of the DGA procedure.

With approximations to the committors and steady-state
density provided by DGA (or any other means), TPT pro-
vides recipes to assemble approximations of the transition
path statistics examined in this paper. For example, the
reactive density m4p can be computed directly from its
definition in (14). The transition rate and projections of the
reactive current J4p are estimated by more involved pro-
cedures presented in detail in section 3 of the supplement.

5. Conclusion

Extreme weather events are a central challenge of cli-
mate modeling. We need to be able to characterize changes
in flooding, heat waves, cold spells, and other natural disas-
ters. While many existing techniques are being developed
to simulate and diagnose rare events, there is an overall
lack of standard language and benchmarks for compari-
son. A related computational problem is that rare events
take a long time to appear, let alone produce a significant
statistical distribution, in both models and observations.

We have advocated two ideas to advance extreme
weather modeling. First, we have presented a transition
path theory (TPT) analysis of a prototypical extreme event,
sudden stratospheric warmings (SSW) in the Holton-Mass
model. TPT provides a set of summary statistics that encap-
sulate important features of rare events, including rates (or
inverse return times), precursors, and onset behavior. Prob-
ability densities and currents tell us how the system evolves
through state space to an SSW event, including the inter-
play between momentum and heat transfers. The minimum-
action method provides a useful but limited point of com-
parison, as it provides no information about the variablity
of transitions. Second, we have demonstrated the numeri-
cal ability to use short simulations to estimate rare event
statistics, which has great potential as a parallelizable al-
ternative to running long simulations. This was shown in
Finkel et al. (2021) for the narrow goal of forecasting SSW
events in the Holton-Mass model; here we have used the
same computational method to ask more intricate statis-
tical questions about the evolution of SSWs from start to
finish.

We have shown that transition paths in the Holton-Mass
model generally evolve through two distinct phases: (i) a
gradual, halting decline in zonal wind strength in tandem
with a slowly increasing meridional heat flux over a period
of approximately 2 months, followed by (ii), a rapid burst of
heat flux and deceleration of zonal wind in the last 10 days.
The sudden breakdown of the vortex in the second stage
encompasses the classic synoptic evolution of an SSW,
but from a predictability standpoint, it is changes in the
precondition phase that are most critical, allowing one to
forecast a warming before the event is already in motion.
Our key conclusion is the SSW committor probability rises
the most during the preconditioning phase. The committor
signals an upcoming SSW before changes in the vortex (as
quantified by just the zonal mean zonal wind) can be clearly
identified above the noise in an individual trajectory.

A judicious choice of the “climatological state” A is es-
sential to maximize predictive and dynamical understand-
ing of the rare event’s origin when using the TPT frame-
work. In defining A relative to winds in the strong vortex
meta-stable state, we were able to fully include stage (i).
This lengthened the window over which we could tracked
SSW trajectories to seasonal time scales. Extending this



work to the atmosphere, where the climatological state is
itself evolving on comparable time scales, remains a chal-
lenge.

Our work is an early application of TPT to atmospheric
science. We believe it holds potential as a framework for
forecasting, risk analysis, and uncertainty quantification.
Thus far, it has been used mainly to analyze protein folding
in molecular dynamics, but is now being applied in diverse
fields such as social science (Helfmann et al. 2021), as
well as ocean and atmospheric science (Finkel et al. 2020;
Helfmann et al. 2020; Lucente et al. 2021). A potential
limitation of TPT is that it cannot easily quantify long-term
correlations between successive rare events. For example,
a large earthquake might release enough tectonic stress to
make the next one less severe. The approach will require
further extensions to address such issues.

Significant challenges also remain for deploying DGA
at scale to state-of-the-art climate models. The numeri-
cal pipeline used in this paper is far from optimal, as we
have focused on basic deliverables of TPT. One impor-
tant limitation is the data generation step. We used a long
ergodic trajectory to sample the attractor, which served
the double purpose of seeding initial data points for short
trajectories (i.e., defining the sampling measure 1) and pro-
viding a ground truth for validating the accuracy of DGA.
In a real application where DGA is advantageous, this
data set would not be available, and more advanced sam-
pling methods would be required. One promising strategy
is splitting: starting from initial points in A and B, simu-
late forward for a short time, and replicate trajectories that
explore new regions of state space. Efficient sampling is an
active research area, with recent work including Hoffman
et al. (2006); Weare (2009); Bouchet et al. (2011, 2014);
Vanden-Eijnden and Weare (2013); Chen et al. (2014); Ya-
suda et al. (2017); Farazmand and Sapsis (2017); Demat-
teis et al. (2018); Mohamad and Sapsis (2018); Dematteis
et al. (2019); Ragone et al. (2018); Webber et al. (2019);
Bouchet et al. (2019a,b); Plotkin et al. (2019); Simonnet
et al. (2021); Ragone and Bouchet (2020); Sapsis (2021);
Abbot et al. (2021). We will draw upon these developing
methods when scaling DGA up to more realistic models
and data.
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