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ABSTRACT

Atmospheric regime transitions are highly impactful as drivers of extreme weather events, but

pose two formidable modeling challenges: predicting the next event (weather forecasting), and

characterizing the average behavior over many events (the risk climatology). Each event has a

different duration and spatial structure, making it hard to define an objective “average event.” We

argue here that transition path theory (TPT), a framework from stochastic process theory, is an

appropriate tool for the task. We demonstrate TPT’s capacities on a wave-mean flow model of

sudden stratospheric warmings (SSWs) developed by Holton and Mass (1976), which is idealized

enough for transparent TPT analysis but complex enough to demonstrate computational scalability.

Whereas a recent article (Finkel et al. 2021) studied near-termSSWpredictability, the present article

uses TPT to link predictability to long-term SSW frequency. This requires not only forecasting

forward in time from an initial condition, but also backward in time to assess the probability of the

initial conditions themselves. TPT enables one to condition the dynamics on the regime transition

occurring, and thus visualize its physical drivers with a vector field called the reactive current.

The reactive current shows that before an SSW, dissipation and stochastic forcing drive a slow

decay of vortex strength at lower altitudes. The response of upper-level winds is late and sudden,

occurring only after the transition is almost complete from a probabilistic point of view. This case

study demonstrates that TPT quantities, visualized in a space of physically meaningful variables,

can help to understand the dynamics of regime transitions.
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1. Introduction32

Many features of the atmosphere-ocean system’s large-scale variability can be understood, to33

some extent, as transitions between qualitatively different regimes. Examples include blocking,34

monsoons, El Niño, and Sudden Stratospheric Warming events (SSWs, the subject of this paper),35

all of which are associated with extreme weather. From a scientific perspective, regime transitions36

are handles by which to probe the climate’s nonlinear, non-equilibrium dynamics. They expose37

novel physics and push us to qualitatively expand our physical understanding. From a human38

perspective, these relatively rare anomalies pose major societal challenges (Lesk et al. 2016; Kron39

et al. 2019), especially with a changing climate and increasing reliance on weather-susceptible40

infrastructure (e.g., Mann et al. 2017; Frame et al. 2020).41

Regime transitions are used as benchmarks for model development across the hierarchy, from42

state-of-the-art Earth system models with billions of variables (e.g., Stephenson et al. 2008;43

Lengaigne and Vecchi 2010; Vitart and Robertson 2018) to conceptual low-order models with44

fewer than ten variables (e.g., Charney and DeVore 1979; Timmermann et al. 2003; Ruzmaikin45

et al. 2003; Crommelin et al. 2004; Thual et al. 2016). In Finkel et al. (2021), we addressed46

near term forecasting of regime transitions in the context of an idealized sudden stratospheric47

warming (SSW) model due to Holton and Mass (1976), which possesses two metastable states: a48

strong-vortex regime 𝐴, and a weak-vortex regime 𝐵.49

The present paper’s main contribution is to address aspects of the long-term climate statistics50

of SSW events: how often do they occur, what are their typical development pathways, and how51

variable are those pathways between events? We will use the framework of transition path theory52

(TPT; E and Vanden-Eijnden 2006), which offers a concise set of quantities to answer these53

questions. An SSW event is represented as a transition path from 𝐴 to 𝐵. The main quantity of54
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interest will be the reactive current J𝐴𝐵, defined in section 3, which specifies the flow of probability55

density through state space conditioned on an 𝐴→ 𝐵 transition event being underway. To properly56

implement that conditional statement, we will need two auxiliary quantities. First, the forward57

committor 𝑞+
𝐵
(x) gives the probability that the system, initialized in a state x, next reaches 𝐵 before58

𝐴. This is a measure of progress toward SSW. Second, the backward committor 𝑞−
𝐴
(x) gives the59

probability, looking backward in time, that the system visited 𝐴 more recently than 𝐵.60

The forward committor itself was a primary focus of Finkel et al. (2021), where we pursued61

forecasting as a main objective. Committor probabilities are generally gaining traction as a metric62

for weather prediction; see Tantet et al. (2015) for an application to atmospheric blocking, Lee et al.63

(2018) for an application to tropical cyclone downscaling, Lucente et al. (2022) for an application to64

El Niño, and Miloshevich et al. (2022) for a very recent application to heat waves. However, in the65

present paper we are pursuing climatological statistics rather than forecasting probabilities, using66

the committor only as an intermediate calculation for the reactive current, which characterizes the67

full transition process from 𝐴 to 𝐵 rather than its “forward half” from x to 𝐵.68

Some previous studies (Crommelin 2003; Tantet et al. 2015) have visualized what are essentially69

reactive currents for blocking events in an observable subspace of leading EOFs. However, these70

studies were not couched in the language of TPT, a formalism that brings more quantitative results.71

Namely, the reactive current J𝐴𝐵 provides a direct estimate of the SSW rate, decomposing it over a72

continuous probability distribution of pathways. Formal TPT has not yet been widely taken up by73

the atmosphere-ocean science community, besides a few exceptions (Finkel et al. 2020; Miron et al.74

2021, 2022). Part of our goal here is to encourage a common quantitative language for discussing75

regime transitions, which could help to organize several existing lines of research.76

J𝐴𝐵, like 𝑞+𝐵, can be expressed as a function of any observable subspace for visual exploration,with77

the complementary subspace treated as random variables. It is most enlightening to use observables78
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with concrete physical meaning. A recent articleMiloshevich et al. (2022) exploited this property to79

interpret a neural-network-learned committor for heat waves in terms of geopotential height and soil80

moisture, thus quantifying their predictive power at various lead times. In Finkel et al. (2021), we81

visualized the committor and expected lead time in a two-dimensional subspace consisting of zonal82

wind𝑈, an index for polar vortex strength, and vertically integrated heat flux (IHF), which roughly83

measures the amplitude and phase tilt of vortex-disrupting planetary waves. Here we continue to84

use those coordinates, but also introduce a new subspace based on the zonal-mean meridional85

potential vorticity (PV) gradient and eddy enstrophy. These two quantities obey a conservation law86

in the absence of dissipation and stochastic forcing, a slight variation of the Eliassen-Palm relation.87

This allows us to diagnose more precisely the crucial roles of dissipation and stochastic forcing88

in driving the transition process, an important step toward understanding their causal relationship.89

Other kinds of atmospheric regime transitions will have different relevant physical diagnostics, any90

of which can be seen as an independent variable for the committor function and reactive current.91

This paper is organized as follows. In section 2 we recapitulate the dynamical model. In section92

3 we visualize the evolution of SSW events using the probability current, and introduce the key93

quantities for TPT—committors, densities, and currents—alongwith a brief summary of themethod94

to compute them, which is more thoroughly explained in the supplementary document. In section95

4, we use reactive current to construct a composite SSW evolution, and compare this to the standard96

composite method. In section 5, we change coordinates to better examine the dynamics of SSW97

events. We assess future directions and conclude in section 6.98

2. The dynamical SSW model99

Weuse exactly the samemodel as in Finkel et al. (2021), which is presented here for completeness.100
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a. Model specification101

Holton andMass (1976) developed a minimal model for the variability of the winter stratospheric102

polar vortex, capturing the wave-mean flow interactions behind sudden stratospheric warming103

events. The model’s prognostic variables consist of a zonally averaged zonal wind 𝑢(𝑦, 𝑧, 𝑡) and a104

perturbation geostrophic streamfunction 𝜓′(𝑥, 𝑦, 𝑧, 𝑡) on a 𝛽-plane channel with a central latitude105

of \ = 60◦N, a meridional extent of 60◦, and a height of 70 km, with the coordinate 𝑧 ranging from106

0 at the bottom of the domain (the tropopause) to 70 km at the top of the domain. 𝑢 and 𝜓′ are107

projected onto a single zonal wavenumber 𝑘 = 2/(𝑎 cos\) and a meridional wavenumber ℓ = 3/𝑎:108

𝑢(𝑦, 𝑧, 𝑡) =𝑈 (𝑧, 𝑡) sin(ℓ𝑦) (1)

𝜓′(𝑥, 𝑦, 𝑧, 𝑡) = Re{Ψ(𝑧, 𝑡)𝑒𝑖𝑘𝑥}𝑒𝑧/2𝐻 sin(ℓ𝑦), (2)

where 𝑎 = 6370 km is the radius of Earth, and 𝐻 = 7 km is the scale height. 𝑈 (the mean flow)109

and Ψ (a complex-valued wave amplitude) evolve according to the projected primitive equations110

and the linearized quasi-geostrophic potential vorticity (QGPV) equation. A non-dimensionalized111

version of the equations is as follows, rearranged slightly from Finkel et al. (2021). The mean flow112

𝑈 (𝑧, 𝑡) satisfies113

2
(Yℓ)2

𝜕𝑡

[
G2𝛽+ Y

(
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

) ]
(3a)

=
2
Yℓ2

𝑒𝑧𝜕𝑧
[
𝑒−𝑧𝛼𝜕𝑧 (𝑈 −𝑈𝑅)

]
+ 𝑘𝑒𝑧Im{Ψ∗Ψ𝑧𝑧}

with boundary conditions

𝑈 (𝑧 = 0) =𝑈𝑅 (𝑧 = 0) = 10m/s

𝑈𝑧 (𝑧 = 𝑧top) =𝑈𝑅
𝑧 (𝑧 = 𝑧top) = 𝛾/1000
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while the perturbation streamfunction amplitude Ψ(𝑧, 𝑡) satisfies114

(𝜕𝑡 + 𝑖𝑘Y𝑈)
[
−G2(𝑘2 + ℓ2) − 1

4
+ 𝜕2𝑧

]
Ψ (3b)

+𝑖𝑘Ψ
[
G2𝛽+ Y

(
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

) ]
= −

(
𝜕𝑧 −

1
2

) [
𝛼

(
𝜕𝑧 +
1
2

)
Ψ

]
with boundary conditions

Ψ(𝑧 = 0) = 𝑔ℎ

𝑓0

Ψ(𝑧 = 𝑧top) = 0.

We have defined the nondimensional parameter G2 := 𝐻2𝑁2/( 𝑓 20 𝐿
2), where 𝑓0 is the coriolis115

parameter at 60◦N, 𝑁2 = 4× 10−4 is the the stratification, and 𝐿 = 2.5× 105 km is a horizontal116

length scale chosen to make non-dimensionalized 𝑈 and Ψ variables have similar climatological117

variances. The linear relaxation towards 𝑈𝑅 (𝑧) = 10m/s + (𝛾/1000)𝑧 on the right-hand side of118

Eq. (3a) is the force that maintains the typically strong polar vortex. Here 𝛾 = 1.5 m s−1 km−1.119

The relaxation is mediated by a Newtonian cooling profile 𝛼(𝑧), which is plotted in Fig. 1a, in its120

original dimensional units. Meanwhile, the lower boundary condition on Ψ comes from a bottom121

topography ℎcos(𝑘𝑥), where ℎ = 38.5 m. This serves as a source of planetary waves.122

There are two differences from Finkel et al. (2021), besides rearrangement. First, Finkel et al.123

(2021) had an erroneous but inconsequential negative sign in front of 𝑈𝑅
𝑧𝑧 (their Eq. 3) which is124

corrected in Eq. (3a). Second, the left side of Eq. (3b) has two terms, ±𝑖𝑘YG2ℓ2𝑈Ψ, which could125

be cancelled out; we have retained them both to maintain a term-by-term correspondence with the126
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original QGPV equation,127

(𝜕𝑡 +𝑢𝜕𝑥)𝑞′+ 𝑣′𝜕𝑦𝑞 = sources − sinks, (4)

where 𝑞′ = ∇2𝜓′+
𝑓 20
𝑁2

𝑒𝑧/𝐻𝜕𝑧 (𝑒−𝑧/𝐻𝜓′) (5)

and 𝑣′ = 𝜕𝑥𝜓
′ (6)

which will be important when deriving the enstrophy budget in section 5.128

After discretizing to 27 vertical levels, we end upwith a state space of dimension 𝑑 = 3×(27−2) =129

75, with a state vector130

X(𝑡) =
[
Re{Ψ(𝑡)}, Im{Ψ(𝑡)},𝑈 (𝑡)

]
∈ R75 (7)

each of the three entries representing a vector with 25 discrete altitudes. We thus obtain a system131

of 75 ODEs, ¤X(𝑡) = 𝒗(X(𝑡)). We furthermore perturb the system by stochastic forcing to represent132

unresolved processes such as smaller-scaleRossby and gravitywaves, initial condition uncertainties,133

and sources of model error, an approach originally put forward by Birner and Williams (2008) and134

used more recently by Esler and Mester (2019). The forcing is white in time, giving an Itô diffusion135

𝑑X(𝑡) = 𝒗(X(𝑡)) 𝑑𝑡 +𝝈(X(𝑡)) 𝑑W(𝑡) (8)

where 𝒗(x) (not to be confused with meridional wind velocity, 𝑣) is the drift function determined136

by Eqs. (3). W(𝑡) is an (𝑚 + 1)-dimensional white-noise process, and 𝝈 ∈ R𝑑×(𝑚+1) is a matrix137

specifying the spatially smooth structure of the noise as Fourier modes in the vertical. 𝝈 could138

depend on the state vector X, but for simplicity we fix it to a constant, defined as follows. At139

each timestep 𝛿𝑡 = 0.005 days, after incrementing the full system by 𝛿X = 𝒗(X)𝛿𝑡, we additionally140

increment the zonal wind profile by141

𝛿𝑈 (𝑧) = 𝜎𝑈

𝑚∑︁
𝑘=0

[𝑘 sin
[(
𝑘 + 1
2

)
𝜋

𝑧

𝑧top

]√
𝛿𝑡 (9)
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where 𝜎𝑈 = 1 m s−1 day−1/2, whose units reflect the quadratic variation of Brownian motion. The142

numerical scheme is known as Euler-Maruyama (see, e.g., Pavliotis 2014, ch. 5). Equation 9 fully143

defines the matrix 𝝈. For 𝑘 = 0, . . . ,𝑚, the 𝑘th column starts with 50 zeros, since there is no forcing144

on Re{Ψ} or Im{Ψ}. The last 25 entries are evenly spaced samples of the sinusoidal factor in145

Eq. (9), all times 𝜎𝑈 .146

The specific choice of stochastic forcing does affect the transition path statistics, but our method147

can be applied to any stochastic forcing. Because of the nonlinear coupling between𝑈 (𝑧) andΨ(𝑧)148

in Eqs. (3a) and (3b), the noise injected to𝑈 feeds to Ψ after a single timestep.149

b. Diagnostics150

Until section 5, we use two main diagnostics for visualization, the same as in Finkel et al. (2021).151

The first is zonal wind strength 𝑈 (𝑧), an index for vortex strength which is used to define regimes152

𝐴 and 𝐵. The second is the meridional eddy heat flux 𝑣′𝑇 ′(𝑧), which quantifies the heat being153

advected into the polar region associated with the sudden warming, and in the quasi-geostrophic154

limit, the vertical propagation of Rossby waves. In the Holton-Mass model, this takes the form155

𝑣′𝑇 ′(𝑧) = 𝐻 𝑓0
𝑅

𝜕𝜓′

𝜕𝑥

𝜕𝜓′

𝜕𝑧
∝ 𝑒𝑧/𝐻 |Ψ(𝑧) |2 𝜕𝜑

𝜕𝑧
, (10)

where 𝑅 is the ideal gas constant for dry air and 𝜑 is the phase of the complex-valued streamfunction156

Ψ. Hence the heat flux is related to the amplitude and phase tilt of the waves, both of which rise157

significantly during a SSW event. We also use the density-weighted vertical integral of heat flux,158

IHF(𝑧) :=
∫ 𝑧

0
𝑒−𝑧/𝐻𝑣′𝑇 ′(𝑧′) 𝑑𝑧′ (11)

which varies more smoothly than 𝑣′𝑇 ′ at any single altitude.159
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c. Bistability160

We use the same constant parameters and boundary conditions as Finkel et al. (2021), which161

give rise to two stable equilibria: a radiative equilibrium-like state, denoted a, and a disturbed state162

b, in which upward propagating stationary waves flux momentum down to the lower boundary,163

weakening zonal winds. Detailed bifurcation analysis by Yoden (1987a) and Christiansen (2000)164

found a range of values for bottom topography ℎ that create bistability. Figure 1(b,c) depicts165

the zonal wind and streamfunction of these two equilibria. SSW events in this model are abrupt166

transitions from the region near a to the region near b. If a strong wave from below happens167

to catch the stratospheric vortex in a vulnerable configuration, then a burst of wave activity can168

propagate upward, ripping apart the polar vortex and causing zonal wind to collapse (Charney169

and Drazin 1961; Yoden 1987b). With certain parameters, the vortex can get stuck in repeated170

“vacillation cycles”, in which the vortex begins to restore with the help of radiative forcing, only171

to be undermined quickly by the wave. The situation of two well-separated equilibria is highly172

idealized, and not a generic feature of climate phenomena; this system, with these parameters,173

serves to demonstrate qualitative features of SSW, not represent the real stratosphere quantitatively.174

Holton and Mass (1976); Yoden (1987b); Christiansen (2000), and Finkel et al. (2021) contain175

further details.176

A transition path is defined as an unbroken segment, or trajectory, of the system that begins in a177

region 𝐴 of state space (a neighborhood of a) and travels to another region 𝐵 (a neighborhood of178

b) without returning to 𝐴. As in Finkel et al. (2021), we define 𝐴 and 𝐵 based on the zonal-mean179

zonal wind at 𝑧 = 30 km:180

𝐴 = {x ∈ R𝑑 :𝑈 (30 km) (x) ≥ 53.8 m/s} (12a)

𝐵 = {x ∈ R𝑑 :𝑈 (30 km) (x) ≤ 1.75 m/s} (12b)
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where the velocity thresholds correspond to the vortex strength at 30 km for the fixed points a and181

b, respectively.182

An SSW event is then a transition from 𝐴 to 𝐵, while the reverse, from 𝐵 to 𝐴, represents the183

recovery of the vortex. The definition of 𝐵 modifies the widely used definition of Charlton and184

Polvani (2007) in two ways. First, we use zonal wind at 30 km above the tropopause (in log-pressure185

coordinates), because 30 km is where the zonal wind profile of b reaches a minimum; Christiansen186

(2000) used this same coordinate when studying the same model. (The standard 10 hPa pressure187

level would correspond to 𝑧 = −7km× log(10/1000) − 10km ≈ 22 km above the troposphere in188

this model.) We also modify the zonal wind thresholds order to ensure that a ∈ 𝐴 and b ∈ 𝐵.189

An important consequence of our 𝐴 and 𝐵 definitions is that the 𝐴→ 𝐵 transition path takes190

∼ 80 days. By design, this includes the slow initial preconditioning stage of vortex breakdown in191

advance of the ∼ 10-day time horizon that traditionally comprises an SSW event. In this paper,192

‘SSW event’ should be interpreted as both the preconditioning and the ensuing vortex collapse.193

Figure 2 shows timeseries of𝑈 and 𝑣′𝑇 ′ at several different altitudes as the system goes through194

several transition paths in a long simulation. As in Fig. 2 of Finkel et al. (2021), orange strips denote195

𝐴→ 𝐵 transitions while green strips denote 𝐵→ 𝐴 transitions. The long periods in between, which196

we call the 𝐴→ 𝐴 and 𝐵→ 𝐵 phases, demonstrate the bistable nature of regimes 𝐴 and 𝐵. The197

fleeting 𝐴→ 𝐵 phase, however, is what we seek to understand. When the system is en route from198

𝐴 to 𝐵, we say it is (𝐴𝐵)-reactive, using a term from chemistry literature where the passage199

from 𝐴 (reactant) to 𝐵 (product) models a chemical reaction. The following section will introduce200

the reactive density 𝜋𝐴𝐵 (x) and associated reactive current J𝐴𝐵 (x) which help us visualize the201

transition as a path distribution through state space and make the foregoing observations more202

quantitative.203
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3. The reactive density and reactive current: a distribution over transition paths204

We consider the long-time behavior of our stochastic Holton-Mass model X(𝑡) undergoing205

transitions between states 𝐴 and 𝐵. Aggregating together statistics from only the transition paths206

yields a probability distribution called the reactive density 𝜋𝐴𝐵 (x), defined such that207

𝜋𝐴𝐵 (x) 𝑑x = P{X(𝑡) ∈ 𝑑x|X(𝑡) is in

transition from 𝐴 to 𝐵} (13)

where 𝑑x is a small region about x. One could estimate 𝜋𝐴𝐵 by binning samples from a long208

simulation, but including only those samples in transit directly from 𝐴 to 𝐵. Associated to 𝜋𝐴𝐵 is a209

vector field called the reactive current J𝐴𝐵 (x), which quantifies the probability flux passing through210

x per unit time only during transition paths. Roughly speaking, 𝜋𝐴𝐵 specifies where transition paths211

go, and J𝐴𝐵 specifies how they move. Below we define them formally, but Fig. 3(a-c) gives some212

intuition by projecting them on the subspace (𝑈, IHF) at 𝑧 =10, 20, and 30 km. Background shading213

indicates the strength of 𝜋𝐴𝐵, and arrows indicate the magnitude and direction of J𝐴𝐵. Overlaid in214

thin blue lines are ten randomly sampled transition paths from the long ergodic simulation. These215

sample paths cluster in the same regions of state space identified as high-probability under 𝜋𝐴𝐵,216

and on average flow along the arrows, corroborating qualitatively that 𝜋𝐴𝐵 (x) and J𝐴𝐵 describe the217

location and evolution of the model in state space.218

The transition path ensemble shows marked differences between altitudes. At 𝑧 =10 km, the219

vortex strength (𝑈) of states a and b is about the same, but the IHF is very distinct. The reactive220

current aligns with the IHF axis. Mathematically, this reflects the lower boundary condition𝑈 (𝑧 =221

0) =𝑈𝑅 (𝑧 = 0). Physically, this means that the heat flux due to the wave is the dominant physical222

process, with only small changes in zonal wind strength. The higher altitude of 𝑧 = 30 km, by223

contrast, exhibits a large reduction in zonal wind strength, but only in the late stages of the process.224

12



In fact, the pattern of reactive density 𝜋𝐴𝐵 at 𝑧 = 30 km (panel c) tells us that this final deceleration225

is quite sudden: the magnitude of 𝜋𝐴𝐵 is large near 𝐴, meaning transition paths linger there for a226

long time and only slowly crawl downward and to the right. But at the point IHF(30 km) ≈ 2.5×104227

K·m/s,𝑈(30 km) ≈ 30 m/s (the region marked by a dotted circle in panels c and f), 𝜋𝐴𝐵 reduces in228

magnitude and the reactive current spreads out widely as it turns downward toward set 𝐵. This is a229

signal that the transition paths are becoming both faster and more variable.230

As a further point of comparison with J𝐴𝐵, we have plotted the minimum-action pathway from231

𝐴 to 𝐵 with thick cyan lines (section 3 of the supplement specifies the numerical method). This232

represents the most likely transition path in the low-noise limit (e.g., Freidlin and Wentzell 1970;233

E et al. 2004; Forgoston and Moore 2018), and indeed it follows the direction of reactive current.234

With finite noise, however, the transition path ensemble spreads significantly around the minimum-235

action pathway, especially at the higher altitude of 30 km in the late stage of the transition process.236

Because of this, it is not possible for any single pathway, mininimum-action or not, to meaningfully237

represent the full ensemble.238

We will show that the slow, initial phase of SSW involves preconditioning of the vortex: gradual239

erosion of the wind field by the stochastic forcing into a configuration that is especially susceptible240

to wave propagation. Once the wave burst is triggered, it imparts swift changes to the entire241

zonal wind profile. However, the bulk of SSW progress, probabilistically speaking, occurs in the242

preconditioning phase. Below we make this qualitative description precise by relating the reactive243

current to the forecast functions from Finkel et al. (2021): the committor and expected lead time244

metrics.245
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a. Mathematical relationship between current, committor, density, and rate246

To formalize the description above and interpret the current rigorously, some definitions are247

in order, including a brief recap of the quantities from Finkel et al. (2021). Let us fix an initial248

condition X(𝑡0) = x with a vortex that is neither strong nor fully broken down, so x ∉ 𝐴∪ 𝐵. X(𝑡)249

will soon evolve into either 𝐴 or 𝐵, since both are attractive. The probability of hitting 𝐵 first is250

called the forward committor (to 𝐵):251

𝑞+𝐵 (x) = Px{X(𝜏+𝐴∪𝐵 (𝑡0)) ∈ 𝐵} (14)

where the subscript x denotes a conditional probability given X(𝑡0) = x, and 𝜏+
𝑆
(𝑡0) is the first252

hitting time after 𝑡0 to a set 𝑆 ⊂ R𝑑:253

𝜏+𝑆 (𝑡0) =min{𝑡 > 𝑡0 : X(𝑡) ∈ 𝑆}. (15)

Like the expected lead time introduced below, the committor (under various aliases) predates TPT254

as an object of interest in the study of rare events (Du et al. 1998; Bolhuis et al. 2002). However,255

as we will see below, it is a key ingredient in any TPT analysis.256

Our system is autonomous, with no external time-dependent forcing, so we can set 𝑡0 = 0 and drop257

the argument from 𝜏+
𝐴∪𝐵 without loss of generality. The autonomous assumption can be relaxed,258

either by augmenting x with a periodic variable for time (e.g., to include the seasonal cycle) or by259

augmenting 𝐴 and 𝐵 to include initial and terminal times (e.g., to better examine climate change260

effects). Periodic- and finite-time TPT has been presented formally in Helfmann et al. (2020), and261

we have applied it to a dataset of state-of-the-art ensemble forecasts in Finkel et al. (2022). As262

a conceptual demonstration, however, the autonomous Holton-Mass model makes for a clearer263

exposition.264
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While 𝜏+
𝐴∪𝐵 itself is a random variable, one can take its expectation to obtain the expected lead265

time (to 𝐵),266

[+𝐵 (x) := Ex [𝜏+𝐴∪𝐵 |𝜏
+
𝐵 < 𝜏+𝐴], (16)

in other words, the expected time of arrival to 𝐵 conditional on hitting 𝐵 first. Finkel et al. (2021)267

described 𝑞+
𝐵
and [+

𝐵
in detail, as they are central quantities for forecasting, and visualized them in268

their Figs. 2c,d and 3c in the observable subspace (𝑈, IHF). We do the same here, but additionally269

we overlay the reactive current. In Fig. 3(d,e,f), background shading represents the expected lead270

time and black contours represent committor level sets of 0.1, 0.2, 0.5, 0.8, and 0.9.271

The committor’s contour structure differs a lot between altitude levels. At 10 and 30 km (panels d272

and f), the contours have kinks. Depending on the initial condition, either a fluctuation in𝑈 or IHF273

might have a greater effect on the committor. The intermediate altitude of 10 km seems special in274

having committor contours that align with the IHF axis along the main channel of reactive current.275

In other words, 𝑞+
𝐵
(x) is well-approximated by a linear function of 𝑈(20 km), which is consistent276

with the finding in Finkel et al. (2021) that the 21.5-km altitude holds the most predictive power277

for 𝑞+
𝐵
.278

J𝐴𝐵 is related to 𝑞+𝐵, generally flowing up the committor gradient. But J𝐴𝐵 contains some key279

information that the committor does not. As a forecast function, the committor does not distinguish280

𝐴→ 𝐵 transitions from 𝐵→ 𝐵 transitions, where the system leaves state 𝐵 (beginning to recover),281

but then falls back to the weak-vortex state. To isolate the transition events from 𝐴 to 𝐵, we need282

to introduce the backward committor (to 𝐴):283

𝑞−𝐴 (x) = Px{X(𝜏−𝐴∪𝐵 (𝑡0)) ∈ 𝐴} (17)
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where 𝜏−
𝑆
(𝑡0) is the most recent hitting time284

𝜏−𝑆 (𝑡0) =max{𝑡 < 𝑡0 : X(𝑡) ∈ 𝑆} (18)

Intuitively, 𝑞−
𝐴
(x) is the probability of the system at point x last came from 𝐴, not 𝐵. The backward-285

in-time probabilities refer specifically to the process X(𝑡) in steady-state, allowing us once again286

to set 𝑡0 = 0. In other words, 𝑞−𝐴 (x) depends explicitly on the steady-state probability density 𝜋(x),287

where 𝜋(x) 𝑑x = P{X(𝑡) ∈ 𝑑x} is the long-term (climatological) probability of finding the system288

in a small region 𝑑x about x.289

Having defined both forward and backward committors, we can express the reactive density as290

𝜋𝐴𝐵 (x) =
1

𝑍𝐴𝐵

𝜋(x)𝑞−𝐴 (x)𝑞
+
𝐵 (x) (19)

where 𝑍𝐴𝐵 is a normalizing constant such that the right-hand side integrates to one. The associated291

reactive current can in turn be expressed292

J𝐴𝐵 (x) = 𝑞−𝐴𝑞
+
𝐵

[
𝜋𝒗−∇ · (D𝜋)

]
(20)

+ 𝜋D
[
𝑞−𝐴∇𝑞

+
𝐵 − 𝑞+𝐵∇𝑞−𝐴

]
, (21)

where the diffusion matrix D(x) = 12𝝈(x)𝝈(x)
>, and ∇ represents the gradient operator over state293

space.294

Eq. (21) is a specific expression for the current of a diffusion process of the form (8), which is295

the same general formulation as our model. But a more illuminating and general definition is its296

connection to the rate, or inverse return time, of the event (approximately (1700 days)−1 for the297

Holton-Mass model with our chosen parameters). Let 𝐶 be a closed hypersurface in R𝑑 which298

encloses 𝐴 and is disjoint with 𝐵; we call this a dividing surface. In the context of the diagrams in299

Fig. 3, 𝐶 is any curve separating region 𝐴 from region 𝐵. Then we have300 ∮
𝐶

J𝐴𝐵 ·n𝑑𝑆 = Transition rate (22)
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where n is an outward unit normal from 𝐶 and 𝑑𝑆 is a surface area element. The integral rela-301

tionship (22) holds for any dividing surface, implying that the current is divergence-free outside302

of 𝐴 and 𝐵, but has a source in 𝐴 and a sink in 𝐵 (see Vanden-Eijnden (2006) for a thorough303

mathematical explanation of J𝐴𝐵.) This constraint immediately implies a link between magnitude304

and width of J𝐴𝐵 streamlines. In Fig. 3(c,f), the strong magnitude of J𝐴𝐵 near a implies a thin305

central channel, and strict constraints on the mechanisms of early SSW onset. In other words, the306

initial preconditioning phase can only happen in a small number of ways. On the other hand, the307

subsequent weakening of J𝐴𝐵 between 𝑞+𝐵 = 0.5 and 𝑞+
𝐵
= 0.8 (in the boxed region of Fig. 3c,f)308

implies that paths fan out across state space, becoming more variable. This spreading, or diversity309

of events, is only with respect to 𝑈 and IHF at 30 km; at the lower altitudes, the current remains310

strong and narrow all the way through the transition process (Fig. 3, columns 1 and 2).311

The reactive current and density characterize the transition path ensemble across the continuum312

of possible pathways, providing more information than the numerical value of the rate itself. Given313

any user-defined set of coordinates, the reactive current projection maps the transition paths in314

those coordinates, as a statistical ensemble with average behavior and variability. Below, following315

a brief note on the computational method, sections 4 and 5 demonstrate how to use reactive current316

and density to describe climatology and strengthen physical understanding of a rare transition317

event.318

b. Computational method319

The quantities presented in section 3, as well as the results to follow, could be computed directly320

by running a model for long enough to undergo a large number of SSW events and analyzing the321

statistics of those transitions. This procedure, which we call the “ergodic simulation” (ES) method,322

is possible in the 75-dimensional Holton-Mass model, and we have performed such a simulation323
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of 106 days for validation purposes. However, this can be a major computational barrier in global324

climate models when the numerical integration is costly and the return period is long compared325

to the simulation timestep. Anticipating the need for fundamentally different techniques in high-326

dimensional state spaces, we have instead used the dynamical Galerkin approximation (DGA;327

Thiede et al. 2019; Strahan et al. 2021). A large collection of trajectories are launched in parallel328

with initial conditions distributed across state space, each one running for only a short time relative329

to the return period. Here we use 3×105 trajectories of length 20 days each, which is shorter than330

the 80-day duration of a single SSW event and much shorter than the 1700-day return period.331

Afterward, we assemble all these pieces together to estimate the quantities of interest, exploiting332

the Markov property. The total simulation time is not always reduced by this method—in our case,333

the short simulations total 6×106 days compared with the 1×106-day ES—but the format opens334

the door for many interesting possibilities, such as massive parallelization and adaptive sampling.335

In particular, as we show in Finkel et al. (2022), DGA is uniquely positioned to exploit large336

ensembles of short weather forecasts from high-fidelity operational models.337

The basic DGA algorithm for rare event analysis has been described and tested in a recent series338

of articles (Thiede et al. 2019; Strahan et al. 2021; Finkel et al. 2021; Antoszewski et al. 2021).339

It is closely related to the “analogue Markov chain” approach of Lucente et al. (2021). Recently,340

an approach to learning neural network approximations of forecast functions using short trajectory341

data was introduced in Strahan et al. (2022). Due to the dependence on steady state and backward-342

in-time quantities, a full TPT analysis as carried out in this paper requires additional calculations343

beyond what is described in Finkel et al. (2021). We leave these details to the supplement in order344

to keep the focus on the results of our TPT analysis, which are robust with respect to algorithmic345

parameters.346
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4. SSW composites347

Here we explain the traditional notion of a rare event ‘composite’ and contrast it with the348

composite intrinsically defined by TPT. The results are qualitatively similar, but the TPT description349

allows a rigorous mathematical connection to the reactive current and SSW rate.350

The standard “composite” of an SSW event is a day-by-day aggregate of all the SSW events in351

a given dataset, aligned by the central warming date. This can include statistics, such as the mean352

and quantiles, of any observable function, such as the zonal-mean zonal wind or heat flux. Charlton353

and Polvani (2007) and Charlton et al. (2007) used this method to describe SSW climatology and354

establish benchmarks for stratosphere-resolving GCMs. We form a standard composite of 𝑈(30355

km) from our Holton-Mass model in Fig. 4a, averaging together 300 events from a long ergodic356

simulation.357

Here, we propose a complementary “TPT composite” based on reactive density. Instead of358

aligning events by the central warming date, we align the events by a general coordinate 𝑓 (x),359

which can be user-defined but must fulfill the minimal criterion of increasing from 𝐴 to 𝐵, so360

it represents some objective notion of progress. At any progress level 𝑓0, the TPT composite is361

defined by restricting the reactive density 𝜋𝐴𝐵 (x) to the level set {x : 𝑓 (x) = 𝑓0}. Fixing 𝑓 = 𝑓0 is362

not the same as fixing the lead time 𝜏+
𝐵
, because the threshold might be crossed at different times363

by different transition paths. Note that 𝑓 (x) is a deterministic function of initial condition x, unlike364

the hitting time 𝜏+
𝐵
, which is a random variable that changes between realizations launched from365

the same initial condition. Therefore, 𝜏+
𝐵
cannot itself be used as a progress coordinate.366

In Fig. 4b,c, we juxtapose alternative composites with the standard warming date coordinate367

−𝜏+
𝐵
. In panel b, we aggregate paths based on the negative expected lead time −[+

𝐵
defined above:368

the expected time until the central warming date. −[+
𝐵
is the deterministic progress function that369
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is closest (in the mean-square sense) to the random progress function 𝑡 − 𝜏+
𝐵
defining traditional370

composites. Panel c uses an altogether different progress metric, the committor 𝑞+
𝐵
itself, which371

increases from 0 on 𝐴 to 1 on 𝐵.372

The traditional and TPT composites are similar in shape, with an initially gradual decay in373

𝑈(30 km) accelerating into a rapid decline in the final few days. As a function of −[+
𝐵
, 𝑈(30 km)374

accelerates steadily through the whole transition, in both the traditional and TPT composites. But375

as a function of committor, 𝑈(30 km) decreases linearly at first and then accelerates downward376

between 𝑞+
𝐵
= 0.6 and 𝑞+

𝐵
= 0.7. According to the standard composite,𝑈(30 km) becomes steadily377

less variable over time, with the whole ensemble collapsing into a single path by construction, as378

𝑡 = 0 is the time of the event when 𝑈(30 km)= 0. But when viewed as a function of expected lead379

time or committor,𝑈(30 km) becomes more variable in the middle of the path, starting at [+
𝐵
≈ 50380

days or 𝑞+
𝐵
≈ 0.65 and lasting until the end, when [+

𝐵
→ 0 and 𝑞+→ 1.381

The same variability is reflected in Fig. 3c,f. In the boxed region, the reactive density weakens382

and the reactive current spreads out, some paths turning straight downward into 𝐵 and others383

accumulating still more heat flux before making the plunge. The 𝑞+
𝐵
and [+

𝐵
contours in Fig. 3f384

convey geometrically how it is possible to have such wide variation in zonal wind strength even385

at a fixed expected lead time. Along the central channel of strong reactive current, where most of386

the transition paths flow, the committor and expected lead time have an approximately (negative)387

linear relationship. But in the weak-𝑈 flank of the current, especially in the boxed region, the 𝑞+
𝐵

388

level sets “unkink” to align with the IHF axis while the [+
𝐵
level sets turn downward to align with389

the𝑈 axis. The lowest visible level set of [+
𝐵
thus spans a range of vortex strengths of𝑈(30 km).390

Physically, the TPT composites are more variable than the traditional composite because −[+
𝐵
,391

the expected lead time—a deterministic function—is a coarser description than 𝑡 − 𝜏+
𝐵
, a random392

variable. The former is an average over all realizations, while the latter takes on a specific value for393
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each realization, which is not actually known until after thewarming occurs. Given only information394

on the resolved variables Ψ(𝑧, 𝑡) and𝑈 (𝑧, 𝑡) at a given time, the TPT composite is the best one can395

do. The expected lead time quantifies SSW predictability, as established in Finkel et al. (2021).396

Here, we additionally incorporate the backward committor 𝑞−
𝐴
via the reactive density 𝜋𝐴𝐵, and so397

restrict focus to transition events—“major warmings”—from 𝐴 to 𝐵.398

As a loose analogy, a student’s progress toward a degree can be measured objectively in course399

credits. On the other hand, first-year examsmight weed out half of all students, whichmeans that the400

probabilistic half-way point usually comes before half of required credits are done. A third metric,401

the time until graduation, can vary due to random effects like gap years and pandemics, which402

can cause a student to space their course load unevenly in time. Each cross-section of the student403

population—conditioning on a fixed number of credits completed, probability of graduation, or404

expected time until graduation—is a different statistical ensemble, each one conveying different405

information.406

Going forward, we will use the committor as the progress coordinate of choice. That way,407

each point along the composite is an average over trajectories that are equally predictable in their408

probability to reach 𝐵, i.e., to proceed to an SSW. Often it is not just a singular coin toss that409

determines the fate of X(𝑡), but a whole sequence of ‘coin tosses’—random turns through state410

space—aligning in just such a way to navigate from 𝐴 to 𝐵. With the committor as a progress411

coordinate, the ‘coin tosses’ are equidistributed along the horizontal axis, though they may not be412

equidistributed in time.413

The same composite technique can be used to visualize the vertical wind structure at different414

stages. Fig. 5 plots 𝑈 (𝑧) and 𝑣′𝑇 ′(𝑧) as altitude-indexed probability distributions at a series of415

committor level sets: 𝑞+
𝐵
= 0.1, 0.5, and 0.9. The widening variability with increasing committor416

is faintly visible at low altitudes, but increases dramatically above ∼ 23 km, where at the 𝑞+
𝐵
= 0.9417
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level, the mean state (orange curve) falls well below the median state (central gray envelope.) This418

means the distribution of transition states is skewed left by a minority of paths with early collapse419

of upper-level winds. At the same committor range of 0.5-0.9, the vertical profile of meridional heat420

flux inflates dramatically. The altitude range of 𝑧 = 20-25 km is the key transition region, below421

which zonal wind evolves relatively smoothly and with a symmetric distribution, and above which422

it varies rapidly with a skewed distribution. 𝑣′𝑇 ′(𝑧) is maximum near this altitude. We speculate423

that the underlying reason is the Newtonian cooling profile 𝛼(𝑧), which has its own transition424

region centered at 25 km. It is not surprising that zonal wind just below, at 21.5 km, is an optimal425

linear predictor, as we found in Finkel et al. (2021).426

5. A wave-mean flow interaction perspective427

The previous section presented J𝐴𝐵 and 𝜋𝐴𝐵 as functions of two basic observables, zonalwind and428

integrated heat flux, and constructed a composite evolution of these observables. In this section, we429

incorporate more detailed physical knowledge to improve the interpretability of our TPT results. In430

particular, we manipulate the the dynamical equations to derive an enstrophy budget in the Holton-431

Mass model, which reveals a more natural set of coordinates that separates conservative from432

non-conservative processes. By visualizing the current in these coordinates, we identify physical433

drivers of each stage in the transition process. Our goal is twofold: first, to show how TPT can be434

formulated for any observables, and second, more narrowly in the context of this study, how the435

dynamics become more clear when those observables are well-chosen.436

A common diagnostic for wave-mean flow interaction systems is the wave activity, A =437

𝜌𝑠𝑞
′2/(2𝜕𝑦𝑞), whose evolution is related to the Eliassen-Palm (EP) flux divergence (Andrews438

and McIntyre 1976). Yoden (1987b) used wave activity extensively to analyze the vacillating439

regime (our set 𝐵) of the Holton-Mass model, in particular the upward wave propagation that440

22



destabilizes the vortex. Below we derive a related set of equations for the eddy enstrophy, which441

enjoys a simpler balance equation and which we have found is better numerically suited for TPT442

analysis.443

The first step in deriving the EP relation is to multiply the QGPV equation (4) by 𝑞′ and take a444

zonal average, yielding445

𝜕𝑡

(
𝑞′2

2

)
+ 𝑣′𝑞′𝜕𝑦𝑞 = 𝑞′(sources− sinks) (23)

We wish to work with the projected version of the equation, Eq. (3b), rather than the original446

PDE, to account for the approximation sin2(ℓ𝑦) ≈ Y sin(ℓ𝑦) introduced by Holton and Mass (1976)447

for projecting quadratic nonlinearities. The procedure is summarized below, and spelled out more448

thoroughly in section 4 of the supplement.449

Because of the ansatz (2), 𝑞′ is represented in the projected equations by450

𝑞′←→
[
−G2(𝑘2 + ℓ2) − 1

4
+ 𝜕2𝑧

]
Ψ (24)

=: (−𝛿+ 𝜕2𝑧 )Ψ

where←→ denotes correspondence between the full governing equations and the projected, non-451

dimensionalized equations in the Holton-Mass model. Recall that Ψ is the complex amplitude for452

the zonal-perturbation streamfunction 𝜓′(𝑥, 𝑦, 𝑧, 𝑡), in geostrophic balance with the wind (𝑢, 𝑣).453

As a general rule, the zonal average of the product of two wave quantities 𝜓′1 and 𝜓
′
2 of the form454

in Eq. (2).is found by the following formula:455

𝜓′1𝜓
′
2 = Re{Ψ1𝑒𝑖𝑘𝑥}Re{Ψ2𝑒𝑖𝑘𝑥} (25)

= Re{Ψ∗1Ψ2}

Therefore, we multiply both sides of Eq. (3b) by the complex conjugate of (24) and take the real456

part to obtain457
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𝜕𝑡E +𝐹𝑞𝛽𝑒 = 𝐷 (26a)

where458

E =
1
2
𝑒𝑧
�� (− 𝛿+ 𝜕2𝑧 )Ψ��2 (26b)

←→ 1
2
𝑞′2

represents the eddy enstrophy;459

𝐹𝑞 = 𝑘𝑒𝑧Im{Ψ∗Ψ𝑧𝑧} (26c)

←→ 𝑣′𝑞′

represents the meridional eddy PV flux;460

𝛽𝑒 = G2𝛽+ Y
(
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

)
(26d)

←→ 𝜕𝑦𝑞

represents the meridional PV gradient; and461

𝐷 = −Re
{
𝑒𝑧
[ (
− 𝛿+ 𝜕2𝑧

)
Ψ∗

]
×(

𝜕𝑧 −
1
2

) [
𝛼

(
𝜕𝑧 +
1
2

)
Ψ

]}
←→ 𝑞′(sources − sinks)

represents the production and dissipation of enstrophy.462

The standard EP relation would be found by dividing both sides by the meridional PV gradient463

𝛽𝑒, as in Yoden (1987b). Instead, we next turn to the mean-flow equation (3a), which is an evolution464

equation for the PV gradient 𝛽𝑒 rather than𝑈 directly. Multiplying through by 𝛽𝑒, we find465

𝜕𝑡Γ = 𝑅𝛽𝑒 +𝐹𝑞𝛽𝑒 (27a)
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where466

Γ :=
(
𝛽𝑒

Yℓ

)2
(27b)

𝑅 :=
2
Yℓ2

𝑒𝑧𝜕𝑧
[
𝑒−𝑧𝛼𝜕𝑧 (𝑈 −𝑈𝑅)

]
(27c)

The new quantity Γ(𝑧) is the squared meridional gradient of zonal-mean potential vorticity, which467

is highly correlated to zonal wind strength 𝑈 (𝑧) in the Holton-Mass model. 𝑅 is a relaxation468

coefficient for Γ, strengthening the vortex via radiative cooling.469

The advantage of this alternative EP relation is now clear: adding together Eqs. (26) and (27),470

the meridional PV transport 𝐹𝑞𝛽𝑒 cancels to give471

𝜕𝑡 (Γ+E) = 𝑅𝛽𝑒 +𝐷. (28)

In this form, all the dissipative effects are contained on the right-hand side via the cooling coefficient472

𝛼(𝑧), which appears both in 𝐷 and 𝑅. Γ + E would conserved, at every altitude separately, in473

the absence of dissipation and stochastic forcing. In this limit, an increase in eddy enstrophy474

E can only occur at the expense of the mean PV gradient characterized by Γ. Of course, both475

non-conservative effects—dissipation and stochastic forcing—are critically important; vacillation476

cycles and transitions are possible only because the Holton-Mass model, like the full atmosphere,477

is an open system. The utility of Eq. (28) is to isolate those nonconservative effects as almost478

extrinsic inputs.479

a. The importance of non-conservative effects as a function of altitude, inferred from reactive480

current481

Dissipation and forcing act to disrupt the conservation of Γ+E, with a specific pattern shown482

in Fig. 6. The reactive current is shown at three altitudes, as in Fig. 3, but this time in the space483
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(Γ1/2,E1/2) instead of (𝑈, IHF). We take square roots because the visualizations are more clear,484

and the units of s−1 are more comparable with those of zonal wind 𝑈 (𝑧) and radiative cooling485

𝛼(𝑧). (Note that the fixed point b in panel (d) appears to have committor < 1; this is possible486

when projecting out nonlinear coordinates because set 𝐵 is defined based on the 30-km level,487

and the state-space regions that resemble b at 10 km may not resemble it at 30 km.) In the upper488

stratosphere, at 𝑧 = 30 km (panels c and f), themain channel of reactive current flows along a circular489

arc, approximately conserving Γ+E, all the way through the 𝑞+
𝐵
= 0.9 surface: the evolution of an490

SSW is a nearly conservative interaction between waves and the mean flow right up to the end.491

Then, the current weakens in magnitude and spreads out, indicating the critical non-conservative492

processes at the end, where the breaking and dissipation of the anomalous waves cements the SSW493

event. Just as in the (𝑈,IHF) space, the reactive density 𝜋𝐴𝐵 decreases along that circular arc,494

meaning the transition paths accelerate.495

On the other hand, J𝐴𝐵 projected at 𝑧 = 10 km (panels a and d) shows that the dynamics are never496

conservative in the lower stratosphere: the initial motion points not along a circular arc but directly497

leftward, such that Γ+E is decreasing from the start. From the enstrophy budget (28), we conclude498

that a combination of dissipation and stochastic forcing acts strongly at 10 km to precondition the499

vortex. The next subsection shows that stochastic forcing plays the more decisive role.500

Finally, consider themiddle altitude of 20 km, where J𝐴𝐵 has a shape that is intermediate between501

the current at 10 and 30 km. It does not have distinctly positive or negative curvature, but flows502

along a straight channel from 𝐴 to 𝐵. 20 km seems to be in just the right altitude range to feel503

significant dissipation and stochastic forcing—a feature of the lower boundary—but also to channel504

a good share of the loss of Γ to the gain of E, a quasi-conservative property of the loftier 30 km. The505

resulting committor, expected lead time, and reactive current are approximately linear functions of506
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Γ1/2(20 km) and E1/2(20 km). Indeed, the wind and heat flux at 20 km were the most useful for507

prediction in (Finkel et al. 2021, their section 4).508

Fig. 7a,b,c show the composite evolution of Γ+E in orange, along with Γ in blue and E in pink,509

at the same three altitudes 10, 20, and 30 km. All three altitudes show evidence of dissipation, with510

Γ+E weakening as the committor increases, but with distinct differences in the rates. The Γ+E511

composite is concave up at 10 km, implying dissipation is most important at the early stage, when512

the predictability of the event is limited. At 20 km, the composite is practically linear, implying513

that dissipation maintains a constant role in the event’s evolution, gradually opening the valve to514

wave propagation at the last stage of the event. At 30 km, the composite is concave down: the515

flow is initially conservative, with exchange between mean flow and eddies at the onset of vortex516

breakdown, followed by strong dissipation of the waves when the event is all but assured.517

At 20 and 30 km, the distribution of Γ+E begins symmetric, with the mean (orange) tracking518

the median (near the center of the dark gray band). Then between 𝑞+
𝐵
= 0.6 and 0.7, the lower tail519

of the distribution expands quickly, skewing the distribution negative. The distribution at 10 km520

maintains a slight negative skew for the entire transition path. The skewness reflects the occurrence521

of “minor warmings” preceding the SSW, when the vortex begins to break down, but partially522

recovers before the final event.523

The composites, as well as the reactive currents, support the notion of the “typical” transition524

path as an initially non-conservative creep at low altitudes, opening up a valve to allow waves to525

propagate upward, finally yielding a very abrupt collapse at high altitudes follows after a long,526

mostly conservative phase. With the enstrophy budget (28), we can assess the importance of each527

term by plotting those composites as well. Fig. 7d,e,f show the composite evolution of each term at528

each altitude: 𝑅𝛽𝑒 (the relaxation of the squared mean PV gradient, Γ) in blue, 𝐷 (the dissipation529

of enstrophy, E) in pink, and 𝛽𝑒𝐹𝑞 (the transfer of enstrophy from Γ to E) in black, all normalized530
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by the total Γ + E at each level to account for the altitude-dependent differences in variability.531

This allows us to compare how strong each dissipative force is relative to the total budget. The532

sum (𝑅𝛽𝑒 +𝐷)/(Γ+E)—the normalized, deterministic tendency 𝜕𝑡 (Γ+E)/(Γ+E)—is shown as533

a dashed orange curve. Note that this tendency is positive at 10 and 20 km even though Γ+ E534

is actually decreasing. Without stochastic forcing, the system will always approach state a or b,535

depending on where the initial condition falls relative to the surface dividing the two attractors.536

To quantify the critical role of stochastic forcing in effecting the transition at each committor537

level, we define the stochastic tendency of Γ+E along transition paths:538

L𝐴𝐵 [Γ+E](x) = (29)

lim
Δ𝑡→0
E

[
(Γ+E)(X(𝑡 +Δ𝑡)) − (Γ+E)(X(𝑡 −Δ𝑡))

2Δ𝑡���X(𝑡) = x and X(𝑡) is in transition
]

(30)

which is related to the ordinary infinitesimal generator L (see Oksendal (2003) for mathematical539

background and the appendix of Finkel et al. (2021) for its application to the Holton-Mass model).540

The supplement describes the numerical procedure to approximate L𝐴𝐵 using short trajectories541

and with a finite lag time. There, we show thatL𝐴𝐵 𝑓 (x) is related to J𝐴𝐵 ·∇ 𝑓 (x) for any observable542

𝑓 , so it is appropriate to view the arrows in Fig. 3 and 6 as a proxy for the stochastic tendencies of543

the projected observables.544

We introduceL𝐴𝐵 to compare with the deterministic tendency 𝜕𝑡 (Γ+E)(x), which for a diffusion545

process of the form (8) is simply 𝒗(x) · ∇(Γ+E)(x) by the chain rule. Their difference shows the546

impact of stochastic forcing responsible for transitions. More specifically, L𝐴𝐵 − 𝜕𝑡 averaged over547

a committor level 𝑞0 highlights the stochastic effects responsible for taking the system from 𝑞0 to548

28



𝑞0 + 𝑑𝑞. Often it is not just a single coin flip that decides the fate of X(𝑡), but a whole sequence of549

random turns through state space aligning in just such a way to navigate from 𝐴 to 𝐵.550

The role of stochasticity is most stark at 10 and 20 km (panels (d) and (e)) and for 𝑞+
𝐵
< 0.5,551

where L𝐴𝐵 (Γ+E) is negative while 𝜕𝑡 (Γ+E) is positive, due to a strong positive tug of radiative552

cooling versus the weak dissipation of enstrophy. As 𝑞+
𝐵
increases, the stochastic and deterministic553

tendencies grow closer together: the more likely the transition to 𝐵, the easier it is for deterministic554

drift to carry it out alone. At 30 km (panel f), all forms of dissipation and forcing start out relatively555

small compared to the magnitude of Γ+E, but as the path progresses they all diverge away from556

zero. Most notably, the stochastic and deterministic tendencies never diverge very far; if anything,557

stochastic noise slows the collapse of 𝑈(30 km) at the end. It seems that to achieve the 𝐴→ 𝐵558

transition, which is defined entirely in terms of 𝑈(30 km), the most common mechanism is a559

persistent negative push applied to lower altitudes, and this ultimately sets up the higher altitudes560

for more sudden, deterministic collapse after the “hard work” of eroding the vortex from below is561

mostly finished.562

In summary, the TPT diagnostics have demonstrated that the SSW process begins with steady,563

significant decay of the PV gradient (and its squared gradient, Γ) at lower altitudes, driven by the564

stochastic forcing, with only conservative changes taking place at higher altitudes. This precondi-565

tioning of the vortex opens up a valve to the mid-stratosphere. In the late stages of the transition,566

starting between 𝑞+
𝐵
= 0.6 and 0.7, the upper-level winds decline very suddenly. This begins con-567

servatively as eddies grow, exchanging energy with the mean flow, and finishes non-conservatively,568

as friction dissipates the waves.569
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6. Conclusion570

Transition path theory (TPT) is a mathematical framework that can be used to assess the near-571

term predictability and long-term climatology of anomalous weather events. The framework lends572

itself naturally to events associated with regime transitions, but in general it can be applied to573

more general anomalies. The key is to be able to define a suitable reaction coordinate linking574

the event to the mean state. We have analyzed the statistical ensemble of sudden stratospheric575

warmings (SSWs) in the Holton-Mass model. Probability densities and currents tell us how the576

system evolves through state space during the vortex breakdown. The reactive current allows us577

to condition dynamical tendencies on the occurrence of the rare transition event. By overlaying578

J𝐴𝐵 over observable subspaces at different altitudes in the stratosphere, we have identified the key579

roles of dissipation and stochastic forcing patterns that bring about transition paths. The stochastic580

driving represents the effects of unresolved Rossby and gravity waves that have been stripped from581

this highly truncated model. These non-conservative processes, stochastic driving in particular,582

seem to act most forcefully at lower altitudes early in the transition process, conditioning the583

vortex, while the higher altitudes are shielded from significant dissipation. It is only late in the584

transition process, after the likelihood of the event has surpassed 60%, that the upper-level winds585

play a significant role in the dynamics.586

This work is an early application of TPT to atmospheric science. We believe it holds potential587

as a framework for forecasting, risk analysis, and uncertainty quantification. Thus far, it has been588

used mainly to analyze protein folding in molecular dynamics, but is now being applied in diverse589

fields such as social science (Helfmann et al. 2021), as well as ocean and atmospheric science590

(Finkel et al. 2020; Helfmann et al. 2020; Miron et al. 2021, 2022). TPT results are best interpreted591

when viewed in a physically meaningful observable subspace. With the rather simple Holton-592
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Mass model, we identified such a subspace based on an enstrophy budget. In different versions of593

quasigeostrophic dynamics, the wave activity (Nakamura and Solomon 2010; Lubis et al. 2018)594

and other diagnostics based on the transformed-Eulerian-mean (Andrews and McIntyre 1976) are595

likely to be informative coordinates.596

Significant challenges remain for deploying TPT analysis at scale to state-of-the-art climate597

models. We have used the DGA short trajectory analysis algorithm to compute TPT quantities.598

One important limitation of this computational pipeline is the data generation step. We used a599

long ergodic trajectory to sample the attractor, which served the double purpose of seeding initial600

data points for short trajectories and providing a ground truth for validating the accuracy of DGA.601

In some cases, short trajectory data already exist, e.g., from the subseasonal-to-seasonal (S2S)602

database (Vitart and Robertson 2018), which we have used recently in (Finkel et al. 2022) to603

estimate centennial-scale SSW rates from only 21 years of ensemble forecasts. In other cases, it is604

advantageous to generate fresh data in undersampled regions of state space, which would require605

more advanced sampling methods such as the adaptive sampling strategies proposed in Lucente606

et al. (2021) and Strahan et al. (2022) or rare event simulation schemes such as in Mohamad and607

Sapsis (2018); Ragone et al. (2018); Webber et al. (2019); and Ragone and Bouchet (2020).608
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Fig. 7. Enstrophy budget analysis through the 𝐴→ 𝐵 transition. (a) Blue, pink, and orange835

curves represent mean values of Γ, E, and their sum at 𝑧 = 10 km, conditioned on the system836

being in a transition path and near a given committor level (which varies along the horizontal837

axis). Gray envelopes represent the middle 25, 50, and 90-percentile ranges of Γ+E; when838

the orange curve is not at the center of the gray envelopes, the distribution is skewed. (b, c):839

same as (a), but at 𝑧 = 20 and 30 km respectively. (d) Solid orange curve shows the expected840
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(a) (b) (c)

Fig. 1. Parameters and stable equilibria of the Holton-Mass model. (a) The Newtonian cooling profile

𝛼(𝑧). (b) Zonal-mean zonal wind𝑈 (𝑧) and (c) perturbation streamfunction 𝜓 ′(𝑥,60◦N, 𝑧), with contour spacing

of 1.5× 107 m2/s. Dashed lines mean negative values. Blue indicates the strong vortex equilibrium, a, and red

indicates the weak vortex equilibrium, b, as in Eqs. (12).
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Fig. 2. Regime transitions. We plot (a) the zonal-wind strength 𝑈, and (b) the eddy heat flux 𝑣′𝑇 ′, over the

first 3000 days of a long stochastic simulation. The quantities are evaluated at 𝑧 = 10,20, and 30 km. The time

interval contains two transitions from 𝐴 (a strong vortex) to 𝐵 (a weak vortex) and back. 𝐴→ 𝐵 transitions are

highlighted in orange, and 𝐵→ 𝐴 transitions are highlighted in green.
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(a) (b)

(f)

(c)

(d) (e)

Fig. 3. Currents, densities, committors, and expected lead times. (a): Background shading is the reactive

density 𝜋𝐴𝐵, on a log scale. Thin blue lines are ten randomly selected transition paths from the long control

simulation. Thick cyan curve is the minimum-action path from 𝐴 to 𝐵. Also overlaid is a vector field representing

reactive current J𝐴𝐵. The subspace is (𝑈, IHF) evaluated at 𝑧 = 10 km. Positions of the fixed points a and b are

marked. Arrows represent J𝐴𝐵. (b, c): Same as (a), but at 𝑧 = 20 and 30 km respectively. (d) The expected lead

time [+
𝐵
is shaded as background color, and level sets of the committor 𝑞+

𝐵
0.1, 0.2, 0.5, 0.8, and 0.9 are overlaid

as black curves. (e, f): Same as (d), but at 𝑧 = 20 km and 30 km respectively. A box marks a transition region

between narrow, constrained current and wide, dispersed current. See text for a description.
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(a)

(b)

(c)

Fig. 4. Composites evolution of SSW events. Orange curves plot the mean value of𝑈(30 km) at a given stage

in the transition process; expanding gray envelopes show the middle 25-, 50-, and 90-percentile ranges. We use

three different notions of progress: hitting time to 𝐵 (𝑡 − 𝜏+
𝐵
, panel a), expected hitting time to 𝐵 (−[𝐵, panel b),

and committor (𝑞+
𝐵
, panel c).
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(a)

(c)

(e)

Fig. 5. Vertical profiles of transition states and tendencies. Left column:𝑈 (𝑧) averaged over 𝑞+
𝐵
= 0.1, 0.5,

and 0.9. Orange curve is the mean, and gray envelopes represent the middle 25-, 50-, and 90-percentile ranges.

Dashed blue and red curves represent𝑈 (𝑧) for the fixed points a and b. Right column: same as left, but for eddy

meridional heat flux 𝑣′𝑇 ′.
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(a) (b)

(d)

(f)

(c)

(d) (e)

Fig. 6. Current in wave-mean flow coordinates. Same as Fig. 3, but for a different observable subspace

(Γ1/2,E1/2) instead of (𝑈, IHF). See text for definitions. Eddies are characterized by RMS perturbation PV, E1/2,

and the mean flow by the zonal mean PV gradient, Γ1/2.
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(a) (b)

(f)

(c)

(d) (e)

Fig. 7.Enstrophy budget analysis through the 𝐴→ 𝐵 transition. (a) Blue, pink, and orange curves represent

mean values of Γ, E, and their sum at 𝑧 = 10 km, conditioned on the system being in a transition path and near a

given committor level (which varies along the horizontal axis). Gray envelopes represent the middle 25, 50, and

90-percentile ranges of Γ+E; when the orange curve is not at the center of the gray envelopes, the distribution

is skewed. (b, c): same as (a), but at 𝑧 = 20 and 30 km respectively. (d) Solid orange curve shows the expected

tendency of Γ+E at 10 km, again conditioned on being in a transition path and near a given committor level.

Dashed orange curve shows the deterministic tendency at the same committor levels; the difference between the

two indicates the role of stochastic forcing. Blue curve shows the relaxation of Γ (the squared meridional PV

gradient), pink curve shows the dissipation of enstrophy, and black curve shows the meridional transport of PV,

𝐹𝑞𝛽𝑒, which when negative indicates a gain for E at the expense of Γ. The sum of the blue and pink curves gives

the dashed orange curve. (e, f): same as (d), but at 𝑧 = 10 and 20 km respectively. All tendencies are normalized

by Γ+E, as the legend shows, for a comparable vertical scale across altitudes.

877

878

879

880

881

882

883

884

885

886

887

888

49


