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This document has three sections. Section 1 spells out transition path theory (TPT) formally, with definitions and equations for
all quantities of interest without regard to their numerical approximation. Section 2 describes the numerical method, dynamical
Galerkin Approximation (DGA), and provides some numerical benchmarks. Section 3 gives details about the optimization
method we used to find a minimum-action path. Finally, section 4 gives a detailed derivation of the enstrophy budget presented
in section 5 of the main manuscript.

1 Transition path theory formalism
We begin a quantitative description of transition paths by formalizing the notion of the transition path ensemble. The theoretical
development parallels [Vanden-Eijnden, 2006], but expands on it in several ways. Consider the stratosphere, or any other
stochastic ergodic dynamical system, evolving through a very long time interval (−𝑇,𝑇), during which it crosses from 𝐴 to 𝐵
and back a number 𝑀𝑇 of times. As 𝑇 →∞, ergodicity guarantees that 𝑀𝑇 →∞ as well. The 𝑚th transition path begins at time
𝜏−𝑚 (so X(𝜏−𝑚) ∈ 𝐴1) and ends at time 𝜏+𝑚 (so X(𝜏+𝑚) ∈ 𝐵). Each 𝜏−𝑚 marks the beginning of an orange segment in Fig. 2, and 𝜏+𝑚
marks the end of it.

In principle, any statistical average over the transition path ensemble can be found by “ergodic simulation” (ES), in which
we integrate the system for a long enough time to collect a large number of transition path samples. Although ES is simple and
general, it is expensive for high-dimensional models, particularly for rare event simulation. The DGA method, explained below
in section 2, circumvents ES by using only short trajectories (20 days long in our implementation). These are short not only
compared to the return time 𝜏−

𝑚+1−𝜏
+
𝑚 (∼ 1700 days for the Holton-Mass model), but even compared to the (𝐴→ 𝐵) transit time

𝜏+𝑚 − 𝜏−𝑚 (∼ 80 days for the Holton-Mass model). DGA can be used to compute an important class of quantities including the
committor functions, reactive density, and reactive current. The primitive ingredients of this calculation are forecast functions,
defined below.

1.1 Forecast functions
The essential insight of TPT is to express the quantities of interest in terms of a set of forecast functions. We consider a
probabilistic forecast to be an estimate of the future conditioned on the present, of the general form

𝐹+ (x) = Ex [𝑄({(𝑡,X(𝑡)) : 𝑡 ≥ 0})] . (1)

Here,Ex indicates a conditional expectation given a fixed initial condition X(0) = x (we can set 𝑡0 = 0 when assuming autonomous
dynamics).𝑄 is a generic functional of the future evolution of the state X(𝑡). It is explicitly a random variable under the stochastic
forcing we impose here, but even in a deterministic model, uncertainty from initial conditions and model error lead to effective
randomness. For example, 𝑄 could return 1 if X(𝑡) next hits 𝐵 before 𝐴, and 0 if X(𝑡) next hits 𝐴 before 𝐵. This makes 𝐹+

simply the forward committor, as introduced in section 3 of the main text:

𝐹+ (x) = Ex
[
1𝐵 (X(𝜏+𝐴∪𝐵))

]
(2)

= Px{X(𝜏+𝐴∪𝐵) ∈ 𝐵} =: 𝑞+𝐵 (x) (3)

We might also wish to forecast the time it takes to get there, by defining 𝑄 = 𝜏+
𝐴∪𝐵1𝐵 (X(𝜏+

𝐴∪𝐵)), which then gives us the
expected lead time 𝜂+

𝐵
(x) = Ex [𝑄]/𝑞+𝐵 (x).

1Technically, we assume X(𝑡) is right-continuous with left limits, meaning X(𝜏−𝑚) ∉ 𝐴 but lim𝑡↑𝜏−𝑚 X(𝑡) ∈ 𝐴. This detail is not important for us here.
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As explained in section 3 of the main text, the forward committor only looks to the future, and the backward committor is
used to estimate where the system came from in the past:

𝑞−𝐴(x) = Ex [1𝐴(X(𝜏−𝐴∪𝐵))] = Px{X(𝜏−𝐴∪𝐵) ∈ 𝐴} (4)

This is a backward-in-time forecast, or aftcast.
Forward and backward committors are central components in the existing transition path theory laid out in [E and Vanden-Eijnden, 2006,

Vanden-Eijnden, 2006, Metzner et al., 2009, Metzner et al., 2006, Vanden-Eijnden and E, 2010], and elsewhere. Here, we gen-
eralize committors to forecast not only where the trajectory ends up, but what happens along the way. We consider forecast/aftcast
functions of the form

𝐹+
Γ (x;𝜆) = Ex

[
1𝐵 (X(𝜏+𝐴∪𝐵)) exp

(
𝜆

∫ 𝜏+
𝐴∪𝐵

0
Γ(X(𝑟)) 𝑑𝑟

)]
(5)

𝐹−
Γ (x;𝜆) = Ex

[
1𝐴(X(𝜏−𝐴∪𝐵)) exp

(
𝜆

∫ 0

𝜏−
𝐴∪𝐵

Γ(X(𝑟)) 𝑑𝑟
)]

(6)

where 𝜆 is a real free parameter. For certain extreme weather events, Γ might be chosen to measure accumulated damage of
some kind, say, the total rainfall deposited over an area (in the case of hurricanes) or total time with surface temperatures above
a certain threshold (in the case of heat waves). In a downward-coupled SSW model, one could define Γ to reflect the human
impact of extreme cold spells. However, in this paper we only ever set Γ = 1, so the integral is the expected lead time.

Everything we say about transition paths stems originally from the functions 𝐹+
Γ

and 𝐹−
Γ

for various Γ, as well as the
steady-state distribution 𝜋. Thus, we will now express the quantities of interest in terms of 𝜋, 𝐹+

Γ
, 𝐹−

Γ
, and their 𝜆-derivatives.

Section 2 will then explain how to compute them using short simulation data.

1.2 Ergodic averages
The key to transforming forecasts into ensemble averages (at either level) is the ergodic assumption, which goes as follows. Let
Y(𝑡) denote all the hidden variables of the system responsible for apparent randomness, such as unresolved turbulence, so that the
joint process (X(𝑡),Y(𝑡)) is completely deterministic. (In simulation, Y(𝑡) is the state of a pseudo-random number generator.)
The hypothesis then states that there exists a probability density 𝑝(x,y) such that for any bounded observable 𝐺 (X(𝑡),Y(𝑡)),

lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝐺 (X(𝑡),Y(𝑡)) 𝑑𝑡 (7)

=

∫ (∫
𝐺 (x,y)𝑝(x,y) 𝑑y

)
𝜋(x) 𝑑x

=:
∫

Γ(x)𝜋(x) 𝑑x =: 〈Γ〉𝜋 . (8)

As a prototypical example, define

𝐺 (x,y) =
{

1 (x,y) comes from 𝐴 and goes to 𝐵
0 otherwise

(9)

where knowledge of y lets us run the system forward and backward deterministically to evaluate the source and destination of
(x,y). In this case, Eq. (7) becomes

lim
𝑇→∞

1
𝑇

∫ 𝑇

0
1𝐴(X(𝜏−𝐴∪𝐵 (𝑡)))1𝐵 (X(𝜏+𝐴∪𝐵 (𝑡)) 𝑑𝑡

=

∫
𝑞−𝐴(x)𝑞

+
𝐵 (x)𝜋(x) 𝑑x =: 〈𝑞−𝐴𝑞

+
𝐵〉𝜋 . (10)

The left-hand side is the time fraction spent on the way from 𝐴 to 𝐵, and can be estimated from ES. On the right hand side,
Γ(x) = 𝑞+

𝐴
(x)𝑞+

𝐵
(x). Substituting different combinations of 𝐴 and 𝐵 in Eq. (10) gives us the time fraction spend in the phases

𝐵→ 𝐴 (Γ = 𝑞−
𝐵
𝑞+
𝐴
), 𝐴→ 𝐴 (Γ = 𝑞−

𝐴
𝑞+
𝐴
), and 𝐵→ 𝐵 (Γ = 𝑞−

𝐵
𝑞+
𝐵

). Fig. 1a shows these estimates from ES and DGA, which is
further described in section 2 below.
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1.3 Transition path averages and currents
In this section we use forecast functions (5) and (6) to express the transition rate and reactive current. In fact, we will go slightly
further and define a generalized rate:

𝑅Γ (𝜆) : = lim
𝑇→∞

1
𝑇

𝑀𝑇∑︁
𝑚=1

exp
(
𝜆

∫ 𝜏+𝑚

𝜏−𝑚

Γ(X(𝑟)) 𝑑𝑟
)

(11)

The notation emphasizes that 𝑅Γ depends on the observable Γ and the real parameter 𝜆. To unpack this formula, first set 𝜆 = 0
and observe that 𝑅Γ (0) = 𝑀𝑇

𝑇
is the number of transitions per unit time, or ordinary rate, whose inverse is the average period of

the full SSW life cycle.2
The ordinary rate has been studied extensively with TPT and preceding theories. A novel idea that we introduce here is

to include the exponential factor exp
(
𝜆
∫
Γ(X(𝑡)) 𝑑𝑡

)
, though we do not present these results in this paper. The theoretical

development below therefore reduces to classical TPT by replacing Γ with 0.
Returning to (11), we divide through by 𝑅Γ (0):

𝑅Γ (𝜆)
𝑅Γ (0)

= lim
𝑇→∞

1
𝑀𝑇

𝑀𝑇∑︁
𝑚=1

exp
(
𝜆

∫ 𝜏+𝑚

𝜏−𝑚

Γ(X(𝑟)) 𝑑𝑟
)

= Epaths

[
exp

(
𝜆

∫ 𝜏+
𝐵

𝜏−
𝐴

Γ(X(𝑟)) 𝑑𝑟
)]

(13)

where the subscript “paths” distinguishes the expectation as over all transition paths. The right side of (13) is a moment-generating
function for the integral

∫
Γ(X(𝑡)) 𝑑𝑡 over the transition path. Differentiating in 𝜆 yields the moments of the distribution of the

integral, allowing one to calculate variance, skew, and kurtosis:

𝜕𝑘
𝜆
𝑅Γ (0)
𝑅Γ (0)

= Epaths

[(∫ 𝜏+
𝐵

𝜏−
𝐴

Γ(X(𝑟)) 𝑑𝑟
) 𝑘 ]

, (14)

Thus, 𝑅Γ (𝜆) contains much information about the transition ensemble.
We now express 𝑅Γ in terms of the forecast functions 𝐹+

Γ
and 𝐹−

Γ
, again using the key assumption of ergodicity. We must

convert Equation (11), a sum over transition paths
∑𝑀𝑇

𝑚=1 (·), into an integral over time
∫ 𝑇
−𝑇 (·) 𝑑𝑡 and then (by ergodicity) into an

integral over space
∫
R𝑑

(·)𝜋(x) 𝑑x. This approach extends the rate derivation in [Vanden-Eijnden, 2006] and [Strahan et al., 2021]
to generalized rates.

To write the rate as a time integral, we introduce a dividing surface between 𝐴 and 𝐵 (such as a committor level surface)
and use the fact that a transition path crosses such a surface an odd number of times. A mask is applied to the time integral to
select only the time segments when a reactive trajectory segment is crossing this surface (+1 for positive crossings and −1 for
negative crossings), resulting in unit weight for each transition path. To be more explicit, let 𝑆 be a region of state space that
contains 𝐴 and excludes 𝐵, so that its boundary 𝐶 = 𝜕𝑆 is a dividing surface between 𝐴 and 𝐵. The generalized rate (11) can
then be written as the following time integral:

𝑅Γ (𝜆) = lim
Δ𝑡→0

1
Δ𝑡

lim
𝑇→∞

1
𝑇

∫ 𝑇

0
(15)

exp
(
𝜆

∫ 𝜏+
𝐴∪𝐵 (𝑡+Δ𝑡)

𝜏−
𝐴∪𝐵 (𝑡)

Γ(X(𝑟)) 𝑑𝑟
)
× (16)

1𝐴(X(𝜏−𝐴∪𝐵 (𝑡)))1𝐵 (X(𝜏+𝐴∪𝐵 (𝑡 +Δ𝑡)))× (17)[
1𝑆 (X(𝑡))1𝑆c (X(𝑡 +Δ𝑡)) (18)

−1𝑆c (X(𝑡))1𝑆 (X(𝑡 +Δ𝑡))
]
𝑑𝑡 (19)

2This is not to be confused with the asymmetric forward and backward rates,

𝑘𝐴𝐵 =
𝑅Γ (0)
〈𝑞−

𝐴
〉𝜋
, 𝑘𝐵𝐴 =

𝑅Γ (0)
〈𝑞−

𝐵
〉𝜋

(12)

which distinguish the 𝐴→ 𝐵 and 𝐵→ 𝐴 directions by how fast they occur. The factor 〈𝑞−
𝐴
〉𝜋 is the time fraction spent having last been in 𝐴 rather than 𝐵, and

〈𝑞−
𝐵
〉 is the opposite. For example, if 𝐴 were very stable and 𝐵 very unstable, the system would spend most of its time in the basin of attraction of 𝐴, making

〈𝑞−
𝐴
〉𝜋 large and 𝑘𝐴𝐵 � 𝑘𝐵𝐴. Asymmetric rates (or “rate constants”) are very important for chemistry applications, but the symmetric rate is more useful to

us presently.
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The idea is to restrict the interval (0,𝑇) to the collection of time intervals (𝑡, 𝑡 +Δ𝑡) during which the path crosses the surface
𝜕𝑆. Line (17) applies a mask picking out transition path segments, which are those that come from 𝐴 and next go to 𝐵. Line (18)
applies a further mask picking out the narrow time intervals when X(𝑡) exits the region from 𝑆 to 𝑆c, while line (19) subtracts the
backward crossings from 𝑆c to 𝑆. Using ergodicity, we can replace the time integral with a space integral and insert conditional
expectations inside. For example, the part of the integrand

exp
(
𝜆

∫ 𝜏+
𝐴∪𝐵 (𝑡+Δ𝑡)

𝑡+Δ𝑡
Γ(X(𝑟)) 𝑑𝑟

)
× (20)

1𝐵 (X(𝜏+𝐴∪𝐵 (𝑡 +Δ𝑡)))1𝑆c (X(𝑡 +Δ𝑡))

becomes, after taking conditional expectations,

E
[
1𝑆c (X(𝑡 +Δ𝑡))𝐹+

Γ (X(𝑡 +Δ𝑡))
��X(𝑡) = x

]
(21)

=: T Δ𝑡
[
1𝑆c𝐹+

Γ

]
(x)

Where the transition operator is defined as T Δ𝑡 𝑓 (x) = Ex [ 𝑓 (X(Δ𝑡))]. Applying similar logic to all terms in the integrand, we
have the following generalized rate formula:

𝑅Γ (𝜆) = lim
Δ𝑡→0

1
Δ𝑡

∫
R𝑑
𝐹−
Γ (x;𝜆)× (22){

1𝑆T Δ𝑡
[
1𝑆c𝐹+

Γ

]
−1𝑆cT Δ𝑡

[
1𝑆𝐹

+
Γ

]}
(x)𝜋(x) 𝑑x

which holds for any 𝑆 enclosing 𝐴 and disjoint from 𝐵. This is a form estimable from short simulation data, which the next
section will explain.

The rate formula (22) is suggestive of a surface integral, counting hopping events across the surface 𝜕𝑆. In fact, the reactive
current J𝐴𝐵 is defined as the vector field whose surface integral is equal to the symmetric rate:

𝑅Γ (0) =
∫
𝐶

J𝐴𝐵 ·n𝑑𝜎 (23)

We have visualized J𝐴𝐵 in sections 3 and 5 of the main text using a discretization of the integrand in (22).
We have now completely described the mathematics of TPT, and our extensions to it. Exact knowledge of 𝜋, 𝐹+

Γ
, 𝐹−

Γ
, and

their 𝜆-derivatives is enough to generate all of the figures shown so far. The next section explains both how to compute these
fundamental ingredients from data and assemble them into generalized rates.

2 Numerical method: dynamical Galerkin approximation (DGA)

2.1 Feynman-Kac formulae
We now sketch the numerical method, following [Thiede et al., 2019, Strahan et al., 2021], and [Finkel et al., 2021]. Equations
(5) and (6) involve an integral in time all the way from 𝑡 = 0 to 𝑡 = 𝜏+

𝐴∪𝐵 or (in backward time) to 𝜏−
𝐴∪𝐵, when X(𝑡) hits either 𝐴

or 𝐵 after wandering through state space for an indeterminate period. This would seem to require long trajectories to estimate.
However, below we write 𝐹±

Γ
as solutions to partial differential equations called Feynman-Kac formulae [Oksendal, 2003,

Karatzas and Shreve, 1998, E et al., 2019], which read
(L +𝜆Γ(x))𝐹+

Γ
(x;𝜆) = 0 x ∈ 𝐷

𝐹+
Γ
(x) = 0 x ∈ 𝐴

𝐹+
Γ
(x) = 1 x ∈ 𝐵

(24)

where L𝜙(x) := lim
Δ𝑡→0

Ex [𝜙(X(Δ𝑡))] −𝜙(x)
Δ𝑡

(25)
(L̃ +𝜆Γ(x))𝐹−

Γ
(x;𝜆) = 0 x ∈ 𝐷

𝐹−
Γ
(x) = 1 x ∈ 𝐴

𝐹−
Γ
(x) = 0 x ∈ 𝐵

(26)

where L̃𝜙(x) := lim
Δ𝑡→0

Ex [𝜙(X(−Δ𝑡))] −𝜙(x)
Δ𝑡

(27)
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The linear operators L and L̃ are known as the forward and backward infinitesimal generators, pushing observable functions
𝜙 forward or backward in time analogously to a material derivative in fluid mechanics. The first term in the numerator of (25)
is the transition operator. The backward-in-time expectations are defined specifically for the equilibrium process, leading to
L̃𝜙(x) = 1

𝜋 (x)L
∗ [𝜋𝜙] (x), where L∗ is the adjoint of L with respect to the reference (Lebesgue) measure 𝑑x. Equivalently, L̃

is the adjoint of L with respect to the steady-state measure 𝜋(x) 𝑑x. In addition, we have the stationary Fokker-Planck equation
for 𝜋 itself: {

L∗𝜋(x) = 0 x ∈ R𝑑∫
R𝑑
𝜋(x) 𝑑x = 1

(28)

We can further obtain equations for the derivatives of𝐹±
Γ

with respect to𝜆, using the Kac moment method [Fitzsimmons and Pitman, 1999]
as also described in [Finkel et al., 2021]. Differentiating Eq. (24) in 𝜆 and setting 𝜆 = 0 yields a recursive sequence of equations
for the higher derivatives of 𝐹+

Γ
:

L
[
𝜕𝑘𝜆 𝐹

+
Γ

]
(x;0) = −𝑘Γ𝜕𝑘−1

𝜆 𝐹+
Γ (x;0), 𝑘 ≥ 1, (29)

with boundary conditions 𝜕𝑘
𝜆
𝐹+
Γ

��
𝐴∪𝐵 = 0. The same procedure can be applied to the aftcast 𝐹−

Γ
. Thus, our entire numerical

pipeline boils down to solving equations of the form (24), (26), and (28), as well as the inhomogeneous version (29). In
particular, the expected lead time 𝜂+

𝐵
is equal to 1

𝑞+
𝐵
(x) 𝜕𝜆𝐹

+
Γ
(x;0) where Γ(x) ≡ 1. In other words,

L
[
𝑞+𝐵𝜂

+
𝐵

]
(x) = −𝑞+𝐵 (x) (30)

and the expected lead time 𝜂+
𝐵

can only be computed after first computing the committor 𝑞+
𝐵

.
Section 5 additionally defined the stochastic tendency L𝐴𝐵𝜙 for any observable 𝜙. The idea is to turn the expectations in

Eqs. (25) and (27) into conditional expectations, given that a transition is underway through x. As such, L𝐴𝐵 is defined so that

L𝐴𝐵𝜙(x) = lim
Δ𝑡→0
Ex

[
𝜙(X(Δ𝑡)) −𝜙(X(−Δ𝑡))

2Δ𝑡

����X(𝜏−𝐴∪𝐵) ∈ 𝐴 and X(𝜏+𝐴∪𝐵) ∈ 𝐵
]

(31)

To reveal its connection with the reactive current, and to justify the discretization to follow, we manipulate this formula to express
L𝐴𝐵 in terms of committors. Above, 𝜏+

𝐴∪𝐵 is shorthand for the first hitting time to 𝐴∪𝐵 after 𝑡 = 0, and 𝜏−
𝐴∪𝐵 is shorthand for

the most recent hitting time to 𝐴∪𝐵 before 𝑡 = 0. In the following, we abbreviate 𝜏±
𝐴∪𝐵 by 𝜏± to reduce clutter, and use the fact

that 𝜏+ (0) = 𝜏+ (Δ𝑡) and 𝜏− (0) = 𝜏− (−Δ𝑡) for small enough Δ𝑡 and for x sufficiently far from 𝐴∪𝐵.

L𝐴𝐵𝜙(x) = lim
Δ𝑡→0

1
2Δ𝑡
Ex

[
1𝐴(X(𝜏−))1𝐵 (X(𝜏+))

(
𝜙(X(Δ𝑡)) −𝜙(X(−Δ𝑡))

) ]
Ex

[
1𝐴(X(𝜏−))1𝐵 (X(𝜏+))

] (32)

=
1

𝑞−
𝐴
(x)𝑞+

𝐵
(x) lim

Δ𝑡→0
Ex

[
1𝐴(X(𝜏−))1𝐵 (X(𝜏+)) 𝜙(X(Δ𝑡)) −𝜙(X(−Δ𝑡))

2Δ𝑡

]
(33)

=
1

𝑞−
𝐴
(x)𝑞+

𝐵
(x)

1
2

{
lim
Δ𝑡→0
Ex

[
1𝐴

(
X
(
𝜏− (0)

) )
1𝐵

(
X
(
𝜏+ (Δ𝑡)

) ) 𝜙(X(Δ𝑡)) −𝜙(x)
Δ𝑡

]
(34)

+ lim
Δ𝑡→0
Ex

[
1𝐴

(
X
(
𝜏− (−Δ𝑡)

) )
1𝐵

(
X
(
𝜏+ (0)

) ) 𝜙(x) −𝜙(X(−Δ𝑡))
Δ𝑡

]}
=

1
𝑞−
𝐴
(x)𝑞+

𝐵
(x)

1
2

{
lim
Δ𝑡→0
Ex

[
1𝐴

(
X
(
𝜏− (0)

) ) 1𝐵 (X(𝜏+ (Δ𝑡)))𝜙(X(Δ𝑡)) −1𝐵 (X(𝜏+ (0)))𝜙(x)
Δ𝑡

]
(35)

+ lim
Δ𝑡→0
Ex

[
1𝐵

(
X
(
𝜏+ (0)

) ) 1𝐴(X(𝜏− (0)))𝜙(x) −1𝐴(X(𝜏− (−Δ𝑡)))𝜙(X(−Δ𝑡))
Δ𝑡

]}
=

1
𝑞−
𝐴
(x)𝑞+

𝐵
(x)

1
2

{
𝑞−𝐴(x)L

[
𝑞+𝐵𝜙

]
(x) − 𝑞+𝐵L̃

[
𝑞−𝐴𝜙

]
(x)

}
(36)

=
1
2

{L[𝑞+
𝐵
𝜙] (x)

𝑞+
𝐵
(x) −

L̃[𝑞−
𝐴
𝜙] (x)

𝑞−
𝐴
(x)

}
(37)

Now consider the average of L𝐴𝐵𝜙(x) with respect to the reactive density 𝜋𝐴𝐵 restricted to a region ℛ of state space, e.g.,
near a certain level set of the committor. We can express such an average as
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〈L𝐴𝐵𝜙〉𝜋𝐴𝐵 |ℛ =

∫
ℛ
L𝐴𝐵𝜙(x)𝑞−𝐴(x)𝑞

+
𝐵
(x)𝜋(x) 𝑑x∫

ℛ
𝑞−
𝐴
(x)𝑞+

𝐵
(x)𝜋(x) 𝑑x

=
1
2

∫
ℛ

(
𝑞−
𝐴
L[𝑞+

𝐵
𝜙] − 𝑞+

𝐵
L[𝑞−

𝐴
𝜙]
)
𝜋 𝑑x∫

ℛ
𝑞−
𝐴
𝑞+
𝐵
𝜋 𝑑x

(38)

In [Strahan et al., 2021], Eq. S12, it is shown that

J𝐴𝐵 · ∇𝜙 =
1
2

(
𝑞−𝐴L

[
𝑞+𝐵𝜙

]
− 𝑞+𝐵L̃

[
𝑞−𝐴𝜙

] )
𝜋 (39)

which means that

〈L𝐴𝐵𝜙〉𝜋𝐴𝐵 |ℛ =

∫
ℛ

J𝐴𝐵 · ∇𝜙𝑑x∫
ℛ
𝑞−
𝐴
𝑞+
𝐵
𝜋 𝑑x

(40)

In words, this ratio conveys the total flow of reactive current across contours of 𝜙 in a region ℛ, adjusted for the likelihood for
transition paths to be in ℛ to begin with. The denominator ensures that regions with slow and fast movement of transition paths
are compared fairly.

2.2 Discretization of Feynman-Kac formulae
We will now describe how to discretize and solve these three equations, which requires three similar but distinct procedures.

First we attack (24). The generator of a diffusion processes can be expressed as a partial differential operator, and so the
above equations are PDEs over state space. PDEs cannot be practically discretized in high dimensions, but the essential property
of spatial locality allows for data-driven approximation with short trajectories, using the probabilistic definition in (25) and (27).
This is how we use our large data set of short trajectories,

{X𝑛 (𝑡) : 0 ≤ 𝑡 ≤ Δ𝑡}𝑁𝑛=1, (41)

where the initial points X𝑛 (0) are drawn from a sampling measure 𝜇, which we will define in the following subsection. To
discretize Eq. (24), we first eliminate the numerically problematic limit Δ𝑡 → 0 and integrate the equation using Dynkin’s
Formula [Oksendal, 2003, E et al., 2019]: for any stopping time 𝜃 > 0,

Ex [ 𝑓 (X(𝜃))] = 𝑓 (x) +Ex

[∫ 𝜃

0
L 𝑓 (X(𝑡)) 𝑑𝑡

]
(42)

Here we take 𝜃 = min(Δ𝑡, 𝜏𝐴∪𝐵). In other words, we artificially halt the 𝑛th trajectory X𝑛 (𝑡) if it wanders into 𝐴∪𝐵 before the
terminal time Δ𝑡. The 𝑛th stopping time from the data set is called 𝜃𝑛. The operator on the left-hand side of (42) is known as the
stopped transition operator T 𝜃 . Applying it to the unknown forecast function 𝐹+

Γ
in (24) and using the fact L𝐹+

Γ
= −𝜆Γ𝐹+

Γ
, we

get

T 𝜃𝐹+
Γ (x;𝜆) = 𝐹+

Γ (x;𝜆) −𝜆Ex

[∫ 𝜃

0
Γ(X(𝑡))𝐹+

Γ (X(𝑡);𝜆) 𝑑𝑡
]

(43)

To be more concise, we define the integral operator K 𝜃
Γ
𝑓 (x) = Ex

[ ∫ 𝜃
0 Γ(X(𝑡)) 𝑓 (X(𝑡)) 𝑑𝑡

]
, and write an integrated version

of (24): 
(T 𝜃 −1+𝜆K 𝜃

Γ
)𝐹+

Γ
(x;𝜆) = 0 x ∈ 𝐷

𝐹+
Γ
(x;𝜆) = 0 x ∈ 𝐴

𝐹+
Γ
(x;𝜆) = 1 x ∈ 𝐵

(44)

To discretize this equation and impose regularity on the solution, we approximate 𝐹+
Γ

as a finite linear combination with
coefficients 𝑤 𝑗 (𝐹+

Γ
(x;𝜆)), which we abbreviate 𝑤 𝑗 (𝜆) for simplicity:

𝐹+
Γ (x;𝜆) ≈ 𝐹̂+

Γ (x;𝜆) +
𝑀∑︁
𝑗=1
𝑤 𝑗 (𝜆)𝜙 𝑗 (x;𝜆) (45)
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where 𝐹̂+
Γ

is a guess function obeying the boundary conditions on 𝐴∪ 𝐵, and {𝜙 𝑗 }𝑀𝑗=1 is a collection of basis functions that
are zero on 𝐴∪ 𝐵, which will be defined in the following subsection. The task is now to solve for the coefficients 𝑤 𝑗 (𝜆).
Equation (44) becomes a system of linear equations in 𝑤 𝑗 (𝜆):

𝑀∑︁
𝑗=1
𝑤 𝑗 (𝜆) (T 𝜃 −1+𝜆K 𝜃

Γ )𝜙 𝑗 (x;𝜆) = −(T 𝜃 −1+𝜆K 𝜃
Γ )𝐹̂

+
Γ (x;𝜆) (46)

Since the transfer and integral operators are expectations over the future state of the system beginning at x, we can estimate their
action at x = X𝑛 (0) (a short-trajectory starting point) as

(T 𝜃 −1+𝜆K 𝜃
Γ )𝜙 𝑗 (X𝑛 (0);𝜆) ≈ 𝜙 𝑗 (X𝑛 (𝜃𝑛);𝜆) −𝜙 𝑗 (X𝑛 (0);𝜆) (47)

+𝜆
∫ 𝜃𝑛

0
Γ(X𝑛 (𝑡))𝜙 𝑗 (X𝑛 (𝑡);𝜆) 𝑑𝑡

or, if multiple independent trajectories are launched from x, we can average over them. Applying this to every short trajectory
and plugging into Eq. (46), we obtain a system of 𝑁 equations in 𝑀 unknowns. In practice, 𝑁 � 𝑀 , meaning we have many
more trajectories than basis functions, and the system is overdetermined. A unique, and regularized, solution is obtained by
casting it into weak form: we multiply both sides by 𝜙𝑖 (x) and integrate over state space:

𝑀∑︁
𝑗=1
𝑤 𝑗 (𝜆)

〈
𝜙𝑖 , (T 𝜃 −1+𝜆K 𝜃

Γ )𝜙 𝑗
〉
𝜁
= −

〈
𝜙𝑖 , (T 𝜃 −1+𝜆K 𝜃

Γ )𝐹̂
+
Γ

〉
𝜁

(48)

where the inner products are defined with respect to a measure 𝜁 :

〈 𝑓 , 𝑔〉𝜁 =
∫

𝑓 (x)𝑔(x)𝜁 (x) 𝑑x (49)

With our finite data set, we approximate the inner product by a sum over pairs of points. Given that X𝑛 (0) ∼ 𝜇, the law of large
numbers ensures that for any bounded function 𝐻 (x),

1
𝑁

𝑁∑︁
𝑛=1

𝐻 (X𝑛 (0)) ≈
∫
𝐻 (x)𝜇(x) 𝑑x (50)

becomes more accurate as 𝑁 →∞. Thus we set 𝐻 (x) = 𝜙𝑖 (x) (T 𝜃 −1+𝜆K 𝜃
Γ
)𝜙 𝑗 (x) as estimated by (47), approximate the inner

products with 𝜁 = 𝜇, plug them into (48), and solve the 𝑀 ×𝑀 system of linear equations for 𝑤 𝑗 (𝜆).
Next we address (28). The integrated version of (28) is found by observing that for any bounded function 𝐻,

EX(0)∼𝜋 [𝐻 (X(Δ𝑡))] = EX(Δ𝑡)∼𝜋 [𝐻 (X(Δ𝑡))] (51)

where X(0) ∼ 𝜋 means the initial condition is drawn from equilibrium, and thus so is X(Δ𝑡) since 𝜋 is stationary. Of course, our
initial data is not distributed according to 𝜋, but rather by 𝜇; the goal is to solve for the change of measure 𝑑𝜋

𝑑𝜇
(x). Writing (51)

as an integral, ∫
T Δ𝑡𝐻 (x)𝜋(x) 𝑑x =

∫
𝐻 (x)𝜋(x) 𝑑x (52)

0 =

∫
(T Δ𝑡 −1)𝐻 (x)𝜋(x) 𝑑x (53)

=

∫
(T Δ𝑡 −1)𝐻 (x) 𝑑𝜋

𝑑𝜇
(x)𝜇(x) 𝑑x (54)

=

〈
(T Δ𝑡 −1)𝐻, 𝑑𝜋

𝑑𝜇

〉
𝜇

(55)

As this holds for every bounded 𝐻, we enforce the equation for 𝐻 = 𝜙𝑖 , 𝑖 = 1, . . . , 𝑀 and approximate 𝑑𝜋
𝑑𝜇

=
∑𝑀
𝑗=1𝑤 𝑗

(
𝑑𝜋
𝑑𝜇

)
𝜙 𝑗 ,

resulting in a homogeneous linear system for the coefficients 𝑤 𝑗 similar to (48). The matrix elements are

〈(T Δ𝑡 −1)𝜙𝑖 , 𝜙 𝑗〉𝜇 = 〈𝜙𝑖 , (T Δ𝑡 −1)∗𝜇𝜙 𝑗〉𝜇 (56)

7



where (·)∗𝜇 denotes the adjoint operator with respect to 𝜇. We solve this homogeneous system by 𝑄𝑅 decomposition. Note that
there are no boundary conditions, and the trajectories need not be stopped early. Instead there is a normalization condition,
which we enforce as

∑𝑁
𝑛=1

𝑑𝜋
𝑑𝜇

(X𝑛 (0)) = 1. If we were to divide by Δ𝑡 and take the limit Δ𝑡 → 0, we would recover the strong
form of the Fokker-Planck equation, (28).

We use a particularly simple basis consisting of indicator functions,

𝜙 𝑗 (x) = 1𝑆 𝑗
(x) =

{
1 x ∈ 𝑆 𝑗
0 x ∉ 𝑆 𝑗

(57)

where {𝑆1, . . . , 𝑆𝑀 } is a disjoint partition of state space. We obtain these regions by clustering data points with a hierarchical
version of the K-means algorithm implemented in scikit-learn [Pedregosa et al., 2011], with𝑀 = 1500. With such a basis, the
inner products yield the entries of the Markov matrix 𝑃𝑖 𝑗 described in the main text. This guarantees a null space automatically.
In a more general basis, one can add a constant vector to ensure a nontrivial null vector.

Given the weights 𝑑𝜋
𝑑𝜇

(X𝑛 (0)), we can take any ergodic average Γ by inserting the change of measure:

〈Γ〉𝜋 =
∫
R𝑑

Γ(x)𝜋(x) 𝑑x =

∫
R𝑑

Γ(x) 𝑑x ≈
𝑁∑︁
𝑛=1

Γ(X𝑛 (0))
𝑑𝜋

𝑑𝜇
(X𝑛 (0)) (58)

For the specific case of a Markov state model, we can estimate the 𝜋-weighted state-space integral by decomposing it over
clusters:

〈Γ〉𝜋 =
𝑀∑︁
𝑗=1

∫
𝑆 𝑗

Γ(x)𝜋(x) 𝑑x (59)

≈
𝑀∑︁
𝑗=1
𝑤 𝑗 (𝜋) × (average of Γ over 𝑆 𝑗 ) (60)

≈
𝑀∑︁
𝑗=1
𝑤 𝑗 (𝜋)

∑𝑁
𝑛=1Γ(X𝑛 (0))1𝑆 𝑗

(X𝑛 (0))∑𝑁
𝑛′=11𝑆 𝑗

(X𝑛′ (0))
(61)

=

𝑁∑︁
𝑛=1

Γ(X𝑛 (0))
𝑤 𝑗 (𝑛) (𝜋)

#{𝑛′ : 𝑗 (𝑛′) = 𝑗 (𝑛)} (62)

where 𝑗 (𝑛) is defined as the cluster that X𝑛 (0) is assigned to, i.e., X𝑛 (0) ∈ 𝑆 𝑗 (𝑛) . Hence the change of measure for a Markov
state model is the coefficient of Γ(X𝑛 (0)) in the last equation. Note that it sums to one over all data points, as it must.

Finally, we address the time-reversed Kolmogorov equation (26). The only modification from (24) is that the inner products
in (48) are interpreted in backward time, i.e., with all trajectories reversed, X𝑛 (Δ𝑡) becoming the beginning and X𝑛 (0) becoming
the end. The problem is that X𝑛 (Δ𝑡) is not distributed according to 𝜇, and so we cannot use the same Monte Carlo inner product
as in Eq. (50) with reference measure 𝜁 = 𝜋. However, we can solve the problem by reweighting with the change of measure as
follows, leading to 𝜁 = 𝜋. We let the trajectory be discrete in time, i.e.,

X𝑛 =
[
X𝑛 (0),X𝑛

(
Δ𝑡

𝐾

)
,X𝑛

(
2Δ𝑡
𝐾

)
, . . . ,X𝑛 (Δ𝑡)

]
(63)

and consider functionals 𝐻 [X𝑛] of the whole trajectory. Defining the transition density 𝑝(x,y) for each step of size Δ𝑡, the
expectation of 𝐻 with X𝑛 (0) ∼ 𝜋 is given by

EX(0)∼𝜋𝐻 [X] =
∫

𝑑x0𝜋(x0)
∫
𝑑x1𝑝(x0,x1)

∫
. . .

∫
𝑑x𝐾 𝑝(x𝐾−1,x𝐾 )𝐻 [x0, . . . ,x𝐾 ] (64)

The time reversal step explicitly assumes the equilibrium backward process, leading to a backward transition kernel 𝑝(y,x) =
𝜋 (x)
𝜋 (y) 𝑝(x,y). Inserting this throughout converts the expectation over X(0) into an expectation over X(Δ𝑡):

EX(0)∼𝜋𝐻 [X] =
∫
𝑑x0𝜋(x0)

∫
𝑑x1

𝜋(x1)
𝜋(x0)

𝑝(x1,x0)
∫

(65)

. . .

∫
𝑑x𝐾

𝜋(x𝐾 )
𝜋(x𝐾−1)

𝑝(x𝐾 ,x𝐾−1)𝐻 [x0, . . . ,x𝐾 ] (66)

=

∫
𝑑x𝐾 𝜋(x𝐾 )

∫
𝑑x𝐾−1𝑝(x𝐾 ,x𝐾−1)

∫
. . .

∫
𝑑x0𝑝(x1,x0)𝐻 [x0, . . . ,x𝐾 ] (67)

= ẼX(Δ𝑡)∼𝜋𝐻 [X] (68)
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where Ẽ denotes backward-in-time expectation. This is precisely what we need to apply (50) to the time-reversed process,
namely, define 𝐻 such that

𝜙𝑖 (X(Δ𝑡)) (T 𝜃 −1+𝜆K 𝜃
Γ )𝜙 𝑗 (X(Δ𝑡)) =: 𝐻 [X] (69)

and then integrate over state space weighted by 𝜋, turning the left-hand side into an inner product:

〈𝜙𝑖 , (T̃ 𝜃 −1+𝜆K̃ 𝜃
Γ )𝜙 𝑗〉𝜋 = ẼX(Δ𝑡)∼𝜋𝐻 [X] (70)

= EX(0)∼𝜋𝐻 [X] ≈
𝑁∑︁
𝑛=1

𝐻 [X𝑛]
𝑑𝜋

𝑑𝜇
(X𝑛 (0)) (71)

The right-hand side of Eq. (50) can be estimated similarly, also with 𝜁 = 𝜋.
In both forward- and backward-time estimates, we never solve for 𝐹+

Γ
(x;𝜆) or 𝐹−

Γ
(x;𝜆) with nonzero 𝜆; rather, we repeat the

recursion process with Eq. (29). This is equivalent to implicitly differentiating the discretized system Eq. (48).

2.3 Rate estimate and numerical benchmarking
To estimate generalized rates (in particular, the ordinary rate), we reproduce here the rate estimate from [Strahan et al., 2021]
for reference, which is an almost-direct implementation of the formula (22), repeated here:

𝑅Γ (𝜆) = lim
Δ𝑡→0

1
Δ𝑡

∫
R𝑑
𝐹−
Γ (x;𝜆)× (72){

1𝑆T Δ𝑡
[
1𝑆c𝐹+

Γ

]
−1𝑆cT Δ𝑡

[
1𝑆𝐹

+
Γ

]}
(x)𝜋(x) 𝑑x

In principle, the integral could be estimated directly with any choice of dividing surface 𝑆, but the sum would only use data
either exiting 𝑆 (first term) or entering 𝑆 (second term). We can use all the data at once and improve numerical stability by
averaging over multiple such surfaces, and furthermore converting the transition operator T Δ𝑡 into the generator L. However,
we cannot simply take the limit under the integral due to the discontinuity in 1𝑆 . Instead we get a smooth function into the
integrand with the following steps. First, replace 1𝑆 with 1−1𝑆c everywhere:

𝑅Γ (𝜆) = lim
Δ𝑡→0

1
Δ𝑡

∫
R𝑑
𝐹−
Γ (x;𝜆)× (73){

(1−1𝑆c )T Δ𝑡
[
1𝑆c𝐹+

Γ

]
−1𝑆cT Δ𝑡

[
(1−1𝑆c )𝐹+

Γ

]}
(x)𝜋(x) 𝑑x (74)

= lim
Δ𝑡→0

1
Δ𝑡

∫
R𝑑
𝐹−
Γ (x;𝜆)

{
T Δ𝑡

[
1𝑆c𝐹+

Γ

]
−1𝑆cT Δ𝑡𝐹+

Γ

}
(x)𝜋(x) 𝑑x (75)

(76)

Next, add and subtract 1𝑆c𝐹+
Γ

inside the integrand.

𝑅Γ (𝜆) = lim
Δ𝑡→0

∫
R𝑑
𝐹−
Γ (x;𝜆)

{
T Δ𝑡 −1

Δ𝑡

[
1𝑆c𝐹+

Γ

]
−1𝑆c

T Δ𝑡 −1
Δ𝑡

𝐹+
Γ

}
(x)𝜋(x) 𝑑x (77)

At this point it is tempting to take the limit inside the integral, as (T Δ𝑡 −1)/Δ𝑡 formally approaches L. But the first term acts
on a discontinuous function, which won’t have a well-defined time derivative. We first replace 1𝑆c with a smooth function (on
𝐷), as follows.

Let 𝐾 : R𝑑 → [0,1] be a function that increases from 0 on set 𝐴 to 1 on set 𝐵 (for instance, the committor). Let 𝑆𝜁 = {x :
𝐾 (x) ≤ 𝜁 } for 𝜁 ∈ (0,1), and integrate both sides over 𝜁 , noting that

∫ 1
0 1𝑆c

𝜁
(x) 𝑑𝜁 =

∫ 1
0 1{𝐾 (x) > 𝜁 } 𝑑𝜁 = 𝐾 (x).∫ 1

0
𝑅Γ (𝜆) 𝑑𝜁 = lim

Δ𝑡→0

∫
R𝑑
𝐹−
Γ (x;𝜆)

{
T Δ𝑡 −1

Δ𝑡

[
𝐾𝐹+

Γ

]
−𝐾L𝐹+

Γ

}
(x)𝜋(x) 𝑑x (78)

Now we can move the limit inside and use the PDE to find

𝑅Γ (𝜆) =
∫
R𝑑
𝐹−
Γ (x;𝜆)

{
L[𝐾𝐹+

Γ ] (x) +𝜆𝐾 (x)Γ(x)𝐹+
Γ (x)

]}
𝜋(x) 𝑑x (79)
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This formula can be estimated directly from knowledge of 𝐹−
Γ

,𝐹+
Γ

, and 𝜋, using the ergodic assumption and with a discrete finite
difference in time to estimate L[𝐾𝐹+

Γ
], i.e.,

L[𝐾𝐹+
Γ ] (X𝑛 (0)) ≈

𝐾 (X𝑛 (Δ𝑡))𝐹+
Γ
(X𝑛 (Δ𝑡)) −𝐾 (X𝑛 (0))𝐹+

Γ
(X𝑛 (0))

Δ𝑡
(80)

Derivatives with respect to 𝜆 can be found by iterating the product rule, as we have solved for the derivatives of 𝐹+
Γ

and 𝐹−
Γ

.
To validate DGA numerically, we can compare to the results of ES. In [Finkel et al., 2021] (Fig. 7), we saw convergence

of the DGA committor to the ES committor across state space as sample size and lag time were increased. Here, we turn our
attention to summary statistics of interest for full transition paths, not just forecasting. This will benchmark our current DGA
implementation for comparison with future algorithmic developments.

Fig. 1a displays the time fractions spent in each phase of the SSW lifecycle: 𝐴→ 𝐵, 𝐵→ 𝐴, 𝐴→ 𝐴, and 𝐵→ 𝐵, including
estimates from ES (cyan) and DGA (red) and their uncertainties. The DGA estimate of the 𝐴→ 𝐵 time fraction is a 𝜋-weighted
average of 𝑞−

𝐴
(x)𝑞+

𝐵
(x) over state space,

〈𝑞−𝐴𝑞
+
𝐵〉𝜋 =

∫
𝑞−𝐴(x)𝑞

+
𝐵 (x)𝜋(x) 𝑑x (81)

and similarly for the other phases (section 1 above justifies this formula rigorously, and section 2 above details the numerical
computation of the integral). The DGA error bars are generated by repeating the entire pipeline three times with different short
trajectory realizations. The bar height shows the mean, and the error bars show the minimum and maximum. The ES error bars
are generated by bootstrap resampling (with replacement) 500 times from the control simulation, treating an entire SSW lifecycle
as a single unit (from the beginning of one 𝐴→ 𝐵 transition until the beginning of the next one). This assumes no memory
between successive events, which we have found to be reasonable; there is insignificant autocorrelation between consecutive
return periods. The bars extend two root-mean-squared errors in both directions, enclosing a 95% confidence interval. To first
order, DGA agrees well with ES on the fraction of time spent in each phase. 𝐴 is the more stable of the two regimes, accounting
for ∼ 50% of the time compared to the ∼ 40% of time spent in the orbit of 𝐵. The transition events are both an order of magnitude
shorter, with 𝐵→ 𝐴 taking slightly longer on average. DGA ranks the 𝐴→ 𝐵 and 𝐵→ 𝐴 time fractions correctly, despite a bias
in the absolute magnitudes.

The numbers in Fig. 1a are only relative durations; they do not tell us how long a full life cycle takes. That number is given
by (one over) the rate. Fig. 1b shows three different rate estimates (that is, the generalized rate with Γ = 0) using the formulas
above. The cyan bars come from ES, counting the number of 𝐴→ 𝐵 transitions per unit time. Of course, this equals the number
of 𝐵→ 𝐴 transitions per unit time, so the 𝐴→ 𝐵 and 𝐵→ 𝐴 cyan bars are identical. Error bars come from bootstrapping, as
with the relative durations. The red bars come from DGA, and these estimates are not technically symmetric. The DGA estimate
labeled 𝐴→ 𝐵 integrates J𝐴𝐵 · n over dividing surfaces with n pointing away from 𝐴 toward 𝐵, while the estimate labeled
𝐵→ 𝐴 integrates J𝐵𝐴 · n over surfaces with n pointing away from 𝐵 toward 𝐴. Numerical and sampling errors cause slight
differences between them, but Fig. 1b shows them both to come within 20% of the ES estimate.

DGA estimates should converge with increasing 𝑀 (cluster number) and 𝑁 (short-trajectory ensemble size). Larger 𝑀 makes
the approximation space {𝜙1, . . . , 𝜙𝑀 } more expressive, making finer estimates possible. However, as 𝑀 grows, we need more
short trajectories 𝑁 to robustly estimate the entries of the expanding matrix (48). Conversely, as 𝑀 shrinks, 𝑃𝑖 𝑗 will become
closer to diagonal, because trajectories will escape from their starting cluster less frequently. Thus Δ𝑡 would have to increase
when 𝑀 decreases. The optimal choice for a given model will depend on the relative costs of integrating the model, building
basis sets, and solving large linear systems on different computer architectures. With our choice of 𝑀 = 1500, increasing 𝑁
from 5× 104 to 3× 106 does not change the DGA point estimates very much, but shrinks the error bars by a factor of ∼4. To
further reduce the bias in Fig. 1, we would likely need more refined basis functions, perhaps using nonlinear features as input to
K-means. We do not yet have theoretical guarantees or optimal prescriptions for DGA parameters, but given the flexibility and
parallelizability of the method, we believe it has much room for growth.

2.4 Visualization method
The two-dimensional projections in the main paper are generated with the following procedure. Let y = Y(x) be an observable
subspace, typically with dimension much less than that of x (usually two). Any scalar field 𝐹 (x), such as the committor, has a
projection 𝐹Y (y) onto this subspace by

𝐹Y (y) =
∫
𝐹 (x)𝜋(x)𝛿(Y(x) −y) 𝑑x (82)

In practice, the y space is partitioned into grid boxes 𝑑y, and the integral is estimated from the dataset, yielding

𝐹Y (y) = 1
𝑁

𝑁∑︁
𝑛=1

𝐹 (X𝑛 (0))
𝑑𝜋

𝑑𝜇
(X𝑛 (0))1𝑑y (Y(X𝑛 (0))) (83)
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(b)

(a)

Figure 1: DGA benchmarks and comparison to ES. (a) Time fractions spent in each phase, as calculated by DGA (red) and
ES (cyan). (b) Total SSW rate estimated using both J𝐴𝐵 and J𝐵𝐴; the two cyan columns are identical, as the counting method
includes one 𝐵→ 𝐴 transition for every 𝐴→ 𝐵 transition.
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where 1𝑑y (Y(x)) = 1 if Y(x) ∈ 𝑑y and zero otherwise. In words, we simply take a weighted average over all data points X𝑛 (0)
that project onto the grid box 𝑑y, with weights given by the change of measure. In Fig. 3a-c, we use 𝑞+

𝐵
and 𝑞−

𝐴
for 𝐹. In Fig. 3d-i,

we use 𝐹 = 𝜋𝑞−
𝐴
𝑞−
𝐵

to generate the background colors. The same choices are used in Fig. 6, though in different coordinates.
To display the overlaid vector field, however, requires a more involved formula. We use the exact same reactive current

formula as in the supplement of [Strahan et al., 2021], but repeat it here for reference. The projected current is defined as

JY
𝐴𝐵 (y) =

∫
J𝐴𝐵 (x) · ∇Y(x)𝛿

(
Y(x) −y

)
𝑑x (84)

In the discretized y space, this leads to the discretized projected current:

JY
𝐴𝐵 (y) ≈

1
2Δ𝑡

𝑁∑︁
𝑛=1

𝑑𝜋

𝑑𝜇
(X𝑛 (0))

[
1𝑑y (X𝑛 (0))𝑞−𝐴(X𝑛 (0))𝑞

+
𝐵 (X𝑛 (𝜃𝑛))

Y(X𝑛 (𝜃𝑛)) −Y(X𝑛 (0))
𝜃𝑛

(85)

+1𝑑y (X𝑛 (Δ𝑡))𝑞−𝐴(X𝑛 (𝜃̃𝑛))𝑞
+
𝐵 (X𝑛 (Δ𝑡))

Y(X𝑛 (Δ𝑡)) −Y(X𝑛 (𝜃̃𝑛))
Δ𝑡 − 𝜃̃𝑛

]
(86)

where 𝜃𝑛 and 𝜃̃𝑛 are the “first-entry times” to 𝐷 = (𝐴∪ 𝐵)c in the 𝑛th trajectory with time running forward and backward,
respectively.

We use a similar formula to display the composites in Figs. 4, 5 and the stochastic tendencies in Fig. 7. Suppose we have a
progress coordinate 𝑓 evaluated on all the data points. The composite SSW at a given level 𝑓0 ± 𝑑𝑓 is approximated{

X𝑛 (𝑡) : | 𝑓 (X𝑛 (𝑡)) − 𝑓0 | < 𝑑𝑓 , weighted by 𝑞−𝐴(X𝑛 (𝑡))𝑞
+
𝐵 (X𝑛 (𝑡))

𝑑𝜋

𝑑𝜇
(X𝑛 (0))

}
(87)

where 𝑡 can range from 0 to 20 days, the length of the short trajectory. In Fig. 4b, we use −𝜂+
𝐵

as the progress coordinate 𝑓 ,
spanning the range from −80 days to zero with a step size of 5 days and a tolerance of 𝑑𝑓 = 7.5 days, except for the final level
where the tolerance is reduced to 1.5 days. Smaller tolerances should be possible with a larger dataset, but in our case produced
artifacts in the plot due to limited data. In Fig. 4c, we use 𝑞+

𝐵
as the progress coordinate 𝑓 , spanning the range from 0 to 1 with

a step size of 0.05 and a tolerance of 0.075, except for the final level where the tolerance is reduced to 0.015.
The stochastic tendencies shown in the bottom row of Fig. 7 are found in a similar way. For a given observable, such as Γ,

its stochastic tendency L𝐴𝐵Γ is estimated at a single point in each trajectory, in particular day 𝑡1 = 5 days out of 20, as follows.
First, we set 𝑡0 = 0 days, or else the last-exit time from 𝐴∪ 𝐵 between days 0 and 5. Second, we set 𝑡2 = 10 days, or else the
first-entry time to 𝐴∪𝐵 between days 5 and 10. Then

L𝐴𝐵Γ(X𝑛 (𝑡1)) ≈
1

2𝑞−
𝐴
(𝑡1)𝑞+𝐵 (𝑡1)

[
Γ(X𝑛 (𝑡2)) −Γ(X𝑛 (𝑡1))

𝑡2 − 𝑡1
𝑞−𝐴(𝑡1)𝑞

−
𝐵 (𝑡2) −

Γ(X𝑛 (𝑡1)) −Γ(X𝑛 (𝑡0))
𝑡1 − 𝑡0)

𝑞−𝐴(𝑡0)𝑞
−
𝐵 (𝑡1)

]
(88)

and we estimate the mean stochastic tendency across a surface of constant 𝑞+
𝐵

by the usual method of estimating ergodic averages,
i.e., Eq. (83)

2.5 Algorithmic parameters
Having sketched the general numerical procedure, we now provide the exact parameters used here, which are similar to
those in [Finkel et al., 2021]. We use 𝑁 = 3× 105 trajectories, each of length Δ𝑡 = 20 days, with a sampling interval of 1
day. The initial conditions are resampled from a long (×106-day) control simulation to be uniformly distributed on the space
( |Ψ| (30km),𝑈 (30km)). With a more complex, expensive model, we cannot rely on a control simulation to seed the initial
points, but here we focus on TPT and DGA as a proof of concept rather than optimizing the numerical procedure. We use
𝑀 = 1500 basis functions defined as indicators on a partition induced by 𝐾-means clustering on {X𝑛 (0)}. The clustering is
hierarchical so that the cluster size does not become too imbalanced.

There are many potential directions for methodological improvement. In an expensive model without the ability to run
a long control simulation, we should use a splitting and killing method to seed the initial trajectories across state space.
Moreover, we could perform DGA repeatedly with new data seeded at each iteration in areas of high sensitivity. The choice of
basis function can also powerfully affect DGA’s performance. Indicator functions are advantageous in producing a bona fide
Markov matrix and guaranteeing a maximum principle for the committor probabilities. However, smooth and/or global basis
functions have in some cases found to be more efficient at capturing the structure of the committor with fewer basis elements
[Thiede et al., 2019, Strahan et al., 2021].
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3 Minimum-action method
To compute the minimum-action paths, we use a completely discrete approach for simplicity and to accommodate the low-rank
nature of the stochastic forcing. Heuristically, we wish to find the most probable path connecting 𝐴 and 𝐵, which we take as the
mode of the (discretized) path density over the distribution of paths from 𝐴 to 𝐵. For concreteness, fix x(0) = x0 ∈ 𝐴 and a time
horizon 𝑇 discretized into 𝐾 intervals, with a timestep 𝛿𝑡 = 𝑇/𝐾 = 0.005 days. The discretized dynamics evolve according to the
Euler-Maruyama method as

x(𝑘𝛿𝑡) = x((𝑘 −1)𝛿𝑡) + 𝒗
(
x((𝑘 −1)Δ𝑡)

)
Δ𝑡 +𝝈𝜼𝑘

√
𝛿𝑡 (89)

where 𝜼𝑘 is a vector of i.i.d. unit normal samples, 𝒗 is the deterministic drift, and 𝝈 ∈ R𝑑×𝑚 is the diffusion matrix, with a noise
rank 𝑚 = 3 and a spatially smooth structure as defined in [Finkel et al., 2021]. In the classical minimum-action approach, 𝝈 is
assumed to be a 𝑑 × 𝑑 invertible matrix, and the probability density of a path (x0, . . . ,x𝐾 ) (where x𝑘 = x(𝑘𝛿𝑡)) is

𝐾∏
𝑘=1

N
(
x𝑘
���x𝑘−1 + 𝒗(x𝑘−1)𝛿𝑡,𝜎𝜎>𝛿𝑡

)
(90)

=

𝐾∏
𝑘=1

1
(2𝜋𝛿𝑡)𝑑𝐾/2 (det𝜎)𝐾

× (91)

exp
{
− 1

2

(
x𝑘 −x𝑘−1 − 𝒗(x𝑘−1)𝛿𝑡

)> (𝜎𝜎>)−1

𝛿𝑡

(
x𝑘 −x𝑘−1 − 𝒗(x𝑘−1)𝛿𝑡

)}
(92)

∝ exp
{
− 𝛿𝑡

2

𝐾∑︁
𝑘=1

(
x𝑘 −x𝑘−1

𝛿𝑡
− 𝒗(x𝑘−1)

)>
(𝜎𝜎>)−1

(
x𝑘 −x𝑘−1

𝛿𝑡
− 𝒗(x𝑘−1)

)}
(93)

∼ exp
{
− 1

2

∫ 𝑇

0

[
¤x(𝑡) − 𝒗(x(𝑡))

]
(𝜎𝜎>)−1

[
¤x(𝑡) − 𝒗(x(𝑡))

]
𝑑𝑡

}
as 𝛿𝑡→ 0 (94)

and the problem becomes to minimize the quadratic form in the argument of the exponential, which is the Freidlin-Wentzell
action functional, subject to the constraint x𝐾 ∈ 𝐵. However, because we stir the wind field with smooth spatial forcing in only
𝑚 � 𝑑 wavenumbers, 𝜎 is low-rank and thus 𝝈𝝈> is singular. Given any realized path (x0, . . . ,x𝐾 ), there may be no possible
underlying forcing 𝜼𝑘 that could have produced it under our noise model. So the obvious optimization strategy of fixing x0 and
x𝐾 and varying the steps in between may lead to impossible paths. For this reason, we perform optimization in the space of
perturbations, and ensure that every step of the optimization is realizable under our noise model. This is a strategy we adopt
from the cyclogenesis model [Plotkin et al., 2019]. The result will be a simpler, convex objective function at the expense of a
more complicated constraint. The probability density of a particular forcing sequence (𝜼1, . . . ,𝜼𝐾 ) is given by

𝐾∏
𝑘=1

1
(2𝜋)𝑚/2 exp

(
− 1

2
𝜼>𝑘 𝜼𝑘

)
=

1
(2𝜋)𝑚𝐾/2 exp

(
− 1

2

𝐾∑︁
𝑘=1

𝜼>𝑘 𝜼𝑘

)
(95)

The objective inside the exponential is now a simple quadratic in perturbation space which can be easily differentiated with
respect to those perturbations. The constraint, meanwhile, takes the form of a complicated iterated function. Define the flow
map 𝐹 (x) = x+ 𝒗(x)𝛿𝑡 as the deterministic part of the timestep, so x𝑘 = 𝐹 (x𝑘−1) +𝝈𝜼𝑘

√
𝛿𝑡. In terms of 𝐹, the endpoint has to

be written as a recursive function

x𝐾 = 𝐹 (x𝐾−1) +𝜎𝜼𝐾
√
𝛿𝑡 (96)

x𝐾−1 = 𝐹 (x𝐾−2) +𝜎𝜼𝐾−1
√
𝛿𝑡 (97)

... (98)

x1 = 𝐹 (x0) +𝜎𝜼1
√
𝛿𝑡 (99)

We impose the end constraint by adding to the action a penalty Φ(x𝐾 ) = dist(x𝐾 , 𝐵), a function which linearly increases with
distance to 𝐵. The full optimization problem is

min
𝜼

{
1

2𝐾

𝐾∑︁
𝑘=1

𝜼>𝑘 𝜼𝑘 +𝛼Φ(x𝐾 )
}

(100)

x0 ∈ 𝐴 is fixed (101)

x𝑘 = 𝐹 (x𝑘−1) +𝝈𝜼𝑘
√
𝛿𝑡 for 𝑘 = 1, . . . , 𝐾 (102)
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Here 𝛼 is a weight which can be increased to harden the end constraint. We divide by 𝐾 so that the path action does not
overwhelm the endpoint penalty as 𝐾 →∞. (This makes the sum converge to an integral.) We set x0 to be the fixed point a ∈ 𝐴
when finding the least-action path from 𝐴 to 𝐵 and the fixed point b ∈ 𝐵 when finding the least-action path from 𝐵 to 𝐴. We
used the L-BFGS method as implemented in scipy, with a maximum of 10 iterations. We differentiate Φ(𝑥𝐾 ) with respect to
𝜼𝑘 using knowledge of the adjoint model, with a backward pass through the path to compute each gradient. At each descent
step, we refine the stepsize with backtracking line search. One way to guarantee the end constraint is ultimately satisfied is to
gradually increase 𝛼 and lengthen 𝑇 ; however, we found it sufficient to fix 𝛼 = 1.0 and 𝑇 = 100, in keeping with the typical
observed transit time. We have kept the algorithm simple, not devoting too much effort to finding the global optimimum over
all time horizons, as we only care for a qualitative assessment to compare with results of TPT.

4 Enstrophy budget derivation
Here we derive an enstrophy budget from the Holton-Mass model. For completeness, we also provide a derivation of the original
Holton-Mass model, starting from Eqs. (1) and (6) of [Holton and Mass, 1976] and deriving their Eqs. (9) and (10), equivalent
to Eqs. (3) of our main text. This provides some helpful context for the enstrophy budget.

4.1 Holton-Mass projected model
This section inserts the ansatz (Eqs. 7 of [Holton and Mass, 1976])

𝜓 ′(𝑥, 𝑦, 𝑧, 𝑡) = Re{Ψ(𝑧, 𝑡)𝑒𝑧/2𝐻 𝑒𝑖𝑘𝑥 sinℓ𝑦} (103a)
𝑢(𝑥, 𝑦, 𝑧, 𝑡) =𝑈 (𝑧, 𝑡) sinℓ𝑦 (103b)

into the wave-mean flow model. The equations are nonlinear, involving products of pairs of terms containing sinℓ𝑦, which
projects onto wavenumber 2ℓ. Following [Holton and Mass, 1976], we approximate sin2 ℓ𝑦 by 𝜀 sinℓ𝑦, where 𝜀 = 8/(3𝜋), to
close the equations in terms of a single wavenumber. We will also make extensive use of the identity

𝑒𝑐𝑧𝜕𝑧
(
𝑒−𝑐𝑧 𝑓 (𝑧)

)
= (𝜕𝑧 − 𝑐) 𝑓 (𝑧) (104)

4.1.1 Wave equation

We start with the quasi-geostrophic potential vorticity equation, Eq. (1) of [Holton and Mass, 1976], which governs the tendency
of the streamfunction Ψ:

0 = (𝜕𝑡 +𝑢𝜕𝑥)𝑞′+ 𝜕𝑦𝑞𝜕𝑥𝜓 ′+
𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧 (𝑒−𝑧/𝐻𝛼𝜕𝑧𝜓 ′) (105a)

where

𝑞′ = ∇2𝜓 ′+
𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧 (𝑒−𝑧/𝐻 𝜕𝑧𝜓 ′) (105b)

𝜕𝑦𝑞 = 𝛽− 𝜕2
𝑦𝑢−

𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧 (𝑒−𝑧/𝐻 𝜕𝑧𝑢) (105c)

We deal with the three terms one at a time. All three terms are linear in 𝜓 ′, and so we can take the real part outside. The first
term—the material derivative of PV following the mean flow—is

(𝜕𝑡 +𝑢𝜕𝑥)𝑞′ = Re
{
(𝜕𝑡 +𝑈𝑖𝑘 sinℓ𝑦)

[
− (𝑘2 + ℓ2)Ψ𝑒𝑧/2𝐻 +

𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧
(
𝑒−𝑧/𝐻 𝜕𝑧 (Ψ𝑒𝑧/2𝐻 )

)]
𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(106a)

≈ Re
{
(𝜕𝑡 +𝑈𝑖𝑘𝜀)

[
− (𝑘2 + ℓ2)Ψ𝑒𝑧/2𝐻 +

𝑓 2
0
𝑁2 𝑒

𝑧/2𝐻 𝑒𝑧/2𝐻 𝜕𝑧

(
𝑒−𝑧/2𝐻 𝑒−𝑧/2𝐻 𝜕𝑧 (𝑒𝑧/2𝐻Ψ)

)]
𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(106b)

= Re
{
(𝜕𝑡 +𝑈𝑖𝑘𝜀)

[
− (𝑘2 + ℓ2)Ψ𝑒𝑧/2𝐻 +

𝑓 2
0
𝑁2 𝑒

𝑧/2𝐻
(
𝜕𝑧 −

1
2𝐻

) (
𝜕𝑧 +

1
2𝐻

)
Ψ

]
𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(106c)

= Re
{
(𝜕𝑡 +𝑈𝑖𝑘𝜀)

[
− (𝑘2 + ℓ2)Ψ+

𝑓 2
0
𝑁2

(
𝜕2
𝑧 −

1
4𝐻2

)
Ψ

]
𝑒𝑧/2𝐻 𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(106d)

(106e)
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The second term—meridional advection of PV due to eddies—is

𝜕𝑦𝑞𝜕𝑥𝜓
′ = Re

{[
𝛽+ ℓ2𝑈 sinℓ𝑦−

𝑓 2
0
𝑁2

(
𝑈𝑧𝑧 −

1
𝐻
𝑈𝑧

)
sinℓ𝑦

]
𝑖𝑘Ψ𝑒𝑧/2𝐻 𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(107)

≈ Re
{
𝑖𝑘Ψ

[
𝛽+ 𝜀

(
ℓ2𝑈 +

𝑓 2
0
𝑁2

( 1
𝐻
𝑈𝑧 −𝑈𝑧𝑧

))
𝑒𝑧/2𝐻 𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(108)

The third term—radiative cooling—is

𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧 (𝑒−𝑧/𝐻𝛼𝜕𝑧𝜓 ′) = Re
{
𝑓 2
0
𝑁2

[
𝑒𝑧/2𝐻 𝑒𝑧/2𝐻 𝜕𝑧

(
𝑒−𝑧/2𝐻𝛼𝑒−𝑧/2𝐻 𝜕𝑧

(
𝑒𝑧/2𝐻Ψ

) )]
𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(109)

= Re
{
𝑓 2
0
𝑁2

(
𝜕𝑧 −

1
2𝐻

) [
𝛼

(
𝜕𝑧 +

1
2𝐻

)
Ψ

]
𝑒𝑧/2𝐻 𝑒𝑖𝑘𝑥 sinℓ𝑦

}
(110)

We now combine the three terms. Stipulating they add to zero for all 𝑥 actually means we can drop the “real part” on the outside.
This is because for any complex function 𝑓 (𝑥) = 𝑔(𝑥) + 𝑖ℎ(𝑥) for real 𝑔 and ℎ,

Re{ 𝑓 (𝑥)𝑒𝑖𝑘𝑥} = Re{
(
𝑔(𝑥) + 𝑖ℎ(𝑥)

)
(cos 𝑘𝑥 + 𝑖 sin 𝑘𝑥)} = 𝑔(𝑥) cos 𝑘𝑥− ℎ(𝑥) sin 𝑘𝑥 (111)

By orthogonality of sin(𝑘𝑥) and cos(𝑘𝑥) on the domain, both 𝑔 and ℎmust vanish identically if the left-hand side is zero. Hence,
we recover the projected QGPV equation, Eq. (9) of [Holton and Mass, 1976]:

0 = (𝜕𝑡 + 𝑖𝑘𝜀𝑈)
[
−
(
𝑘2 + ℓ2 +

𝑓 2
0
𝑁2

1
4𝐻2

)
+
𝑓 2
0
𝑁2 𝜕

2
𝑧

]
Ψ (112)

+𝑖𝑘Ψ
[
𝛽+ 𝜀ℓ2𝑈 + 𝜀

𝑓 2
0
𝑁2

(
1
𝐻
𝑈𝑧 −𝑈𝑧𝑧

)]
+
𝑓 2
0
𝑁2

(
𝜕𝑧 −

1
2𝐻

) [
𝛼

(
𝜕𝑧 +

1
2𝐻

)
Ψ

]
We take a further step and non-dimensionalize for a more compact expression. We select a horizontal length scale 𝐿 = 2.5×105

m, a vertical length scale 𝐻 = 7×103 m (the same as the 𝐻 in the equation), and a time scale 𝑇 = 1 day = 86400 s. Thus rescaling
all variables,

0 =
1
𝑇
(𝜕𝑡 + 𝑖𝑘𝜀𝑈)

[
−
(
𝑘2 + ℓ2

𝐿2 +
𝑓 2
0
𝑁2

1
4𝐻2

)
+
𝑓 2
0
𝑁2

1
𝐻2 𝜕

2
𝑧

]
𝐿2

𝑇
Ψ (113)

+ 𝐿
𝑇
𝑖𝑘Ψ

[
𝛽

𝐿𝑇
+ 𝜀ℓ

2𝑈

𝐿𝑇
+ 𝜀

𝑓 2
0
𝑁2

(
𝐿

𝐻2𝑇
𝑈𝑧 −

𝐿

𝐻2𝑇
𝑈𝑧𝑧

)]
+
𝑓 2
0
𝑁2

1
𝐻

(
𝜕𝑧 −

1
2

) [
𝛼

𝐻𝑇

(
𝜕𝑧 +

1
2

)
𝐿2

𝑇
Ψ

]
We now define the dimensionless group G2 := 𝐻2𝑁2/(𝐿2 𝑓 2

0 ) and multiply through by 𝑇2G2 and obtain

(𝜕𝑡 + 𝑖𝑘𝜀𝑈)
[
−G2 (𝑘2 + ℓ2) − 1

4
+ 𝜕2

𝑧

]
Ψ (114)

+ 𝑖𝑘Ψ
[
G2𝛽+ 𝜀

(
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

) ]
= −

(
𝜕𝑧 −

1
2

) [
𝛼

(
𝜕𝑧 +

1
2

)
Ψ

]
exactly as in Eq. (3) of the main paper.
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4.1.2 Mean-flow equation

The PDE for 𝑢 is specified in Eq. (6) of [Holton and Mass, 1976]:

𝜕𝑡

[
𝜕2
𝑦𝑢 +

𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧
(
𝑒−𝑧/𝐻 𝜕𝑧𝑢

) ]
(115)

= −
𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧
[
𝛼𝑒−𝑧/𝐻 𝜕𝑧 (𝑢−𝑢𝑅)

]
(116)

+
𝑓 2
0
𝑁2 𝜕

2
𝑦

[
𝑒𝑧/𝐻 𝜕𝑧

(
𝑒−𝑧/𝐻 𝜕𝑥𝜓 ′𝜕𝑧𝜓 ′)

]
(117)

Putting in the ansatz for𝑈 renders the first two terms trivial. The left-hand side becomes

𝜕𝑡

[
− ℓ2𝑈 +

𝑓 2
0
𝑁2

(
𝑈𝑧𝑧 −

1
𝐻
𝑈𝑧

)]
sinℓ𝑦 (118)

and setting 𝑢𝑅 (𝑧) =𝑈𝑅 (𝑧) sinℓ𝑦, the first term on the right becomes

−
𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧
[
𝛼𝑒−𝑧/𝐻 𝜕𝑧 (𝑈 −𝑈𝑅)

]
(119)

The third term is more involved due to the zonal correlation term. However, we can simplify using the rule for zonal correlations
from Eq. (25) of the main text, which is derived more fully here. Let 𝜓 ′

1 = Re{Ψ1𝑒
𝑖𝑘𝑥} and 𝜓 ′

2 = Re{Ψ2𝑒
𝑖𝑘𝑥}, where Ψ1,Ψ2

are two complex numbers independent of 𝑥 with real parts 𝑋1, 𝑋2 and imaginary parts 𝑌1,𝑌2 respectively. Their zonal eddy
correlation is

𝜓 ′
1𝜓

′
2 = Re{Ψ1𝑒𝑖𝑘𝑥}Re{Ψ2𝑒𝑖𝑘𝑥} (120)

= (𝑋1 cos 𝑘𝑥−𝑌1 sin 𝑘𝑥) (𝑋2 cos 𝑘𝑥−𝑌2 sin 𝑘𝑥) (121)

= 𝑋1𝑋2cos2 𝑘𝑥− (𝑋1𝑌2 +𝑌1𝑋2)cos 𝑘𝑥 sin 𝑘𝑥 +𝑌1𝑌2sin2 𝑘𝑥 (122)

=
1
2
(𝑋1𝑋2 +𝑌1𝑌2) (123)

=
1
2

Re{(𝑋1 − 𝑖𝑌1) (𝑋2 + 𝑖𝑌2)} =
1
2

Re{Ψ∗
1Ψ2} (124)

Using this simple rule, we have

𝜕𝑥𝜓
′𝜕𝑧𝜓 ′ =

1
2

Re
{(
𝑖𝑘Ψ𝑒𝑧/2𝐻 sinℓ𝑦

)∗
𝜕𝑧

(
Ψ𝑒𝑧/2𝐻 sinℓ𝑦

)}
(125)

≈ 1
2
𝑘𝜀Re

{
− 𝑖Ψ∗𝑒𝑧/2𝐻

(
Ψ𝑧 +

1
2𝐻

Ψ

)
𝑒𝑧/2𝐻

}
sinℓ𝑦 (126)

=
1
2
𝑘𝜀 Im{Ψ∗Ψ𝑧}𝑒𝑧/𝐻 sinℓ𝑦 (127)

where we have used that Re{−𝑖Ψ∗Ψ} = 0. The second term on the right-hand side of the mean-flow equation is then

−
𝑓 2
0
𝑁2 ℓ

2𝑒𝑧/𝐻 𝜕𝑧

(
1
2
𝑘𝜀 Im{Ψ∗Ψ𝑧}

)
sinℓ𝑦 = −

𝑓 2
0
𝑁2

𝜀𝑘ℓ2

2
𝑒𝑧/𝐻 Im{Ψ∗Ψ𝑧𝑧} sinℓ𝑦 (128)

where we have used Im{Ψ∗
𝑧Ψ𝑧} = 0. Putting these terms together, dropping the sinℓ𝑦, and negating each term, we reproduce

Eq. (10) of [Holton and Mass, 1976]:

𝜕𝑡

[
ℓ2𝑈 +

𝑓 2
0
𝑁2

(
1
𝐻
𝑈𝑧 −𝑈𝑧𝑧

)]
=
𝑓 2
0
𝑁2 𝑒

𝑧/𝐻 𝜕𝑧
[
𝛼𝑒−𝑧/𝐻 𝜕𝑧 (𝑈 −𝑈𝑅)

]
+
𝑓 2
0
𝑁2

𝜀𝑘ℓ2

2
𝑒𝑧/𝐻 Im{Ψ∗Ψ𝑧𝑧} (129)

Let us non-dimensionalize this equation as we did for the mean-flow equation with the scales 𝐿, 𝐻, and 𝑇 .

1
𝑇
𝜕𝑡

[
1
𝐿𝑇

ℓ2𝑈 +
𝑓 2
0
𝑁2

𝐿

𝐻2𝑇

(
𝑈𝑧 −𝑈𝑧𝑧

) ]
=
𝑓 2
0
𝑁2 𝑒

𝑧 1
𝐻
𝜕𝑧

[
𝛼

𝑇
𝑒−𝑧

𝐿

𝐻𝑇
𝜕𝑧 (𝑈 −𝑈𝑅)

]
+
𝑓 2
0
𝑁2

1
𝐿3
𝜀𝑘ℓ2

2
𝑒𝑧

𝐿4

𝑇2𝐻2 Im{Ψ∗Ψ𝑧𝑧} (130)
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Multiplying through by 𝐿𝑇2G2,

𝜕𝑡
[
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

]
= 𝑒𝑧𝜕𝑧

[
𝛼𝑒−𝑧𝜕𝑧 (𝑈 −𝑈𝑅)

]
+ 𝜀𝑘ℓ

2

2
𝑒𝑧Im{Ψ∗Ψ𝑧𝑧} (131)

Notice that the first term in brackets, G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧 , also appears in the nonlinear coupling on the right-hand side of the
QGPV equation (114). To obtain more symmetry between the wave and mean-flow equations, we add (G2/𝜀)𝜕𝑡 𝛽 (which is
zero) to the left-hand side of Eq. (131), and then multiply through by 2/(𝜀ℓ2):

𝜕𝑡

[
G2

𝜀
𝛽+G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

]
= 𝑒𝑧𝜕𝑧

[
𝑒−𝑧𝛼𝜕𝑧 (𝑈 −𝑈𝑅)

]
+ 𝜀𝑘ℓ

2

2
𝑒𝑧Im{Ψ∗Ψ𝑧𝑧} (132)

2
(𝜀ℓ)2 𝜕𝑡

[
G2𝛽+ 𝜀

(
G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧

) ]
=

2
𝜀ℓ2 𝑒

𝑧𝜕𝑧
[
𝑒−𝑧𝛼𝜕𝑧 (𝑈 −𝑈𝑅)

]
+ 𝑘𝑒𝑧 Im{Ψ∗Ψ𝑧𝑧} (133)

This is Eq. (3)b of our main text.
In the next section, we derive an enstrophy budget directly from these projected equations.

4.2 Enstrophy budget
The enstrophy budget starts with the projected wave-mean flow interaction equations, repeated below with the following
abbreviations:

• 𝛽𝑒 = G2𝛽+ 𝜀(G2ℓ2𝑈 +𝑈𝑧 −𝑈𝑧𝑧). [Holton and Mass, 1976] used the same symbol to denote the corresponding quantity
in the PDE, 𝛽− 𝜕2

𝑦𝑢− 𝑒𝑧/𝐻 𝜕𝑧 [𝑒−𝑧/𝐻 𝜕𝑧𝑢], which physically represents meridional gradient of zonal-mean PV. Here, we
use 𝜕𝑦𝑞 for the PDE version, and 𝛽𝑒 strictly for the projected version of the equation.

• 𝛿 = G2 (𝑘2+ℓ2) + 1
4 . This constant term appears in the expression for QGPV, arising from the three-dimensional Laplacian.

• 𝐹𝑞 = 𝑘𝑒𝑧Im{Ψ∗Ψ𝑧𝑧}. This term represents the eddy meridional PV flux.

• 𝑅 = 2
𝜀ℓ2 𝑒

𝑧𝜕𝑧
[
𝑒−𝑧𝛼𝜕𝑧 (𝑈 −𝑈𝑅)

]
. This term represents thermal relaxation of the wind field toward the radiative wind𝑈𝑅.

With these abbreviations, the wave and mean-flow equations are

2
(𝜀ℓ)2 𝜕𝑡 𝛽𝑒 −𝐹𝑞 = 𝑅 (134a)

(𝜕𝑡 + 𝑖𝑘𝜀𝑈)
(
− 𝛿+ 𝜕2

𝑧

)
Ψ+ 𝑖𝑘Ψ𝛽𝑒 = −

(
𝜕𝑧 −

1
2

) [
𝛼

(
𝜕𝑧 +

1
2

)
Ψ

]
(134b)

Three steps will give us the enstrophy budget.

Step (i) Multiply Eq. (134a) by 𝛽𝑒.

1
(𝜀ℓ)2 𝜕𝑡

(
𝛽2
𝑒

)
−𝐹𝑞𝛽𝑒 = 𝑅𝛽𝑒 (135a)

𝜕𝑡Γ−𝐹𝑞𝛽𝑒 = 𝑅𝛽𝑒 (135b)

where Γ :=
(
𝛽𝑒

𝜀ℓ

)2
(135c)

Step (ii) Multiply Eq. (134b) by (−𝛿+ 𝜕2
𝑧 )Ψ∗, and then take the real part. This corresponds to multiplying by 𝑞′ and taking the

zonal mean, as in the standard EP relation.

Re
{[
(−𝛿+ 𝜕2

𝑧 )Ψ∗] (𝜕𝑡 + 𝑖𝑘𝜀𝑈) (−𝛿+ 𝜕2
𝑧 )Ψ

}
+ 𝑘𝛽𝑒Re

{
𝑖
[
(−𝛿+ 𝜕2

𝑧 )Ψ∗]Ψ}
(136a)

= −Re
{[
(−𝛿+ 𝜕2

𝑧 )Ψ∗] (𝜕𝑧 − 1
2

) [
𝛼

(
𝜕𝑧 +

1
2

)
Ψ

]}
(136b)
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Let us simplify the terms one at a time. The first term on the left can be easily simplified by applying the identity

𝜕𝑡

(1
2
| 𝑓 (𝑡) |2

)
=

1
2
𝜕𝑡 ( 𝑓 ∗ 𝑓 ) =

1
2
( 𝑓 ∗𝑡 𝑓 + 𝑓 ∗ 𝑓𝑡 ) = Re{ 𝑓 ∗𝑡 𝑓 } (137)

to 𝑓 = (−𝛿+ 𝜕2
𝑧 )Ψ∗:

Re
{[
(−𝛿+ 𝜕2

𝑧 )Ψ∗] (𝜕𝑡 + 𝑖𝑘𝜀𝑈) (−𝛿+ 𝜕2
𝑧 )Ψ

}
(138)

= Re
{
𝜕𝑡

(
1
2
��(−𝛿+ 𝜕2

𝑧 )Ψ
��2)} + 𝑘𝜀𝑈Re

{
𝑖
��(−𝛿+ 𝜕2

𝑧 )Ψ
��2} (139)

= 𝜕𝑡

(
1
2
��(−𝛿+ 𝜕2

𝑧 )Ψ
��2) (140)

The second term becomes

𝑘𝛽𝑒Re
{
− 𝛿𝑖Ψ∗Ψ+ 𝑖Ψ∗

𝑧𝑧Ψ
}
= −𝑘𝛽𝑒Im{Ψ∗

𝑧𝑧Ψ} = 𝑘𝛽𝑒Im{Ψ∗Ψ𝑧𝑧} = 𝐹𝑞𝛽𝑒𝑒−𝑧 (141)

where in the last step we recognized the same term from the mean-flow equation. The right-hand side cannot be very
simplified, but we expand term by term for an alternative expression:

−Re
{[
(−𝛿+ 𝜕2

𝑧 )Ψ∗] (𝜕𝑧 − 1
2

) [
𝛼

(
𝜕𝑧 +

1
2

)
Ψ

]}
(142)

= −Re
{(
− 𝛿Ψ∗ +Ψ∗

𝑧𝑧

) (
𝜕𝑧 −

1
2

) (
𝛼Ψ𝑧 +

𝛼

2
Ψ

)}
(143)

= −Re
{(
− 𝛿Ψ∗ +Ψ∗

𝑧𝑧

) [
𝛼Ψ𝑧𝑧 +𝛼𝑧Ψ𝑧 +

(
𝛼𝑧

2
− 𝛼

4

)
Ψ

]}
(144)

= −𝛼 |Ψ𝑧𝑧 |2 −𝛼𝑧Re{Ψ∗
𝑧𝑧Ψ𝑧} −

(
𝛼𝑧

2
− 𝛼

4

)
Re{Ψ∗

𝑧𝑧Ψ} (145)

+ 𝛿
[
𝛼Re{Ψ∗Ψ𝑧𝑧} +𝛼𝑧Re{Ψ∗Ψ𝑧} +

(
𝛼𝑧

2
− 𝛼

4

)
|Ψ|2

]
(146)

= 𝛿

(
𝛼𝑧

2
− 𝛼

4

)
|Ψ|2 + 𝛿𝛼𝑧Re{Ψ∗Ψ𝑧} (147)

+
(
𝛿𝛼+ 𝛼

4
− 𝛼𝑧

2

)
Re{Ψ∗

𝑧𝑧Ψ} −𝛼𝑧Re{Ψ∗
𝑧𝑧Ψ𝑧} −𝛼 |Ψ𝑧𝑧 |2 (148)

Finally, we recombine all three terms and multiply through by 𝑒𝑧 for symmetry with the mean-flow equation.

𝜕𝑡E +𝐹𝑞𝛽𝑒 = 𝐷 (149)
where (150)

E =
1
2
𝑒𝑧
��� (− 𝛿+ 𝜕2

𝑧

)
Ψ

���2 (151)

𝐷 = −Re
{
𝑒𝑧

[ (
− 𝛿+ 𝜕2

𝑧 )Ψ∗) ] (𝜕𝑧 − 1
2

) [
𝛼

(
𝜕𝑧 +

1
2

)
Ψ

]}
(152)

Step (iii) : Add together the evolution equations (135b) and (149) for Γ and E.

𝜕𝑡E = 𝐷 −𝐹𝑞𝛽𝑒 (153)
𝜕𝑡Γ = 𝑅𝛽𝑒 +𝐹𝑞𝛽𝑒 (154)

∴ 𝜕𝑡 (Γ+E) = 𝑅𝛽𝑒 +𝐷 (155)

The advantage of this arrangement is the left-hand side terms are quadratic in Ψ and 𝑈 respectively, while the right-hand
side terms contain all the information about radiative damping via the Newtonian cooling coefficient 𝛼(𝑧). In the absence of
such dissipation, therefore, Γ+E would be a conserved quantity.
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