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Abstract

Extreme weather events have significant consequences, dominating the impact of climate on society,
but occur with small probabilities that are inherently difficult to compute. A rare event with a 100-
year return period takes, on average, 100 years of simulation time to appear just once. Computational
constraints limit the resolution of models used for such long integrations, but high resolution is necessary
to resolve extreme event dynamics. We demonstrate a method to exploit short-term forecasts from
a high-fidelity weather model and lasting only weeks rather than centuries, to estimate the long-term
climatological statistics of rare events. Using only two decades of forecast data, we are able to robustly
estimate return times on the centennial scale. We use the mathematical framework of transition path
theory to compute the rate and seasonal distribution of sudden stratospheric warming (SSW) events of
varying intensity. We find SSW rates consistent with those derived from reanalysis data, but with greater
precision. Our method performs well even with simple feature spaces of moderate dimension, and holds
potential for assessing extreme events beyond SSW, including heat waves and floods.

Plain Language Summary

Weather extremes are a continually recurring threat to human life, infrastructure, and economies. Yet,
we only have sparse datasets of extremes, both simulated and observed, because by definition they occur
rarely. We introduce an approach to extract reliable extreme event statistics from a non-traditional data
source: short, high-resolution weather simulations. With 21 years of 47-day weather forecasts, we estimate
probabilities of once-in-500-year events.

Key points

1. Extreme weather risk, as measured by rate or return times, is inherently difficult to analyze because
of data scarcity.

2. Transition path theory reveals climatological statistics of sudden stratospheric warming events from
high-fidelity subseasonal forecasts.

3. Rates and seasonal distributions of 100-year stratospheric extremes are robustly computed from 47-day
hindcast ensembles across 21 winters.

∗jfinkel@uchicago.edu
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1 Introduction

The atmosphere’s extreme, irregular behavior is, in some ways, more important to characterize than its
typical climatology. A society optimized for historical weather patterns is highly exposed to damage from
extreme heat and cold, flooding, and other natural hazards. Extremes may respond more sensitively than
mean behavior to climate change, an argument supported by elementary statistics (Wigley, 2009), empirical
observations (Coumou & Rahmstorf, 2012; AghaKouchak et al., 2014; O’Gorman, 2012; Huntingford et al.,
2014; Naveau et al., 2020) and simulations (Pfahl et al., 2017; Myhre et al., 2019). Recent unprecedented
extreme weather events demonstrate the serious human impacts (Mishra & Shah, 2018; Van Oldenborgh
et al., 2017; Goss et al., 2020; Fischer et al., 2021). The overall “climate sensitivity” (Hansen et al., 1984),
summarized by a change in global-mean temperature, does not do justice to these consequences, which has
led the community to develop “event-based storylines” (Shepherd et al., 2018; Sillmann et al., 2021) as a
more tangible expression of climate risk.

The intermittency of extreme events makes precise risk assessment exceedingly difficult. 100 flips of
a biased coin with P{Heads} = 0.01 is almost as likely to yield zero heads (probability 0.366) as one
head (probability 0.370), and half as likely to yield two heads (probability 0.185). Similarly, in a 100-
year climate simulation or historical record, a once-per-century event may easily appear either non-existent
or twice as likely as it really is. The difficulty exists even in a stationary climate, but worsens in the
presence of time-dependent forcing, anthropogenic or otherwise. The limited historical record forces us to
use numerical models as approximations, introducing a dilemma: we can run cheap, coarse-resolution models
for long integrations, providing reliable statistics of a biased system, or expensive, high-resolution models
for short integrations, which have lower bias but higher-variance due to under-sampling. Long-term climate
simulations are usually performed with a low resolution of O(50 − 100) km per grid cell (Haarsma et al.,
2016). A coarse model might suffice to estimate global-mean temperature and other aggregated statistics,
but cannot resolve convective systems, e.g., tropical cyclones and precipitation over complex topography,
that deliver localized but heavy damage (O’Brien et al., 2016; He et al., 2019). Even large-scale events, such
as a sudden stratospheric warming (SSW, the specific application of this paper) might arise from multi-scale
interactions that are poorly represented in coarse model grids.

To obtain accurate dynamics and statistics, we must use the highest-fidelity models available, currently
exemplified by the Integrated Forecast System (IFS) of the European Center for Medium-Range Weather
Forecasts (ECMWF). Running at high resolutions of ∼16-32 km (ECMWF, 2016), the IFS produces skillful
ensemble forecasts spanning ∼1 week-1 month. Such a high-resolution model can generate a highly plausible
“storyline”, but cannot feasibly run long enough to estimate the climatological rate of an extreme event.

In this work, we help close this gap by assembling fragmented weather forecast ensembles together to
cover the full dynamically relevant phase space. By re-weighting ensemble members in a principled way, we
estimate probabilities of sudden stratospheric warming (SSW) events, in which the winter stratospheric polar
vortex rapidly breaks down from its typical state, a strong cyclonic circulation over the winter-hemisphere
pole. The associated subsidence and adiabatic warming can cause lower-stratospheric temperatures to rise
by more than 40 K over several days (Baldwin et al., 2021). The reversal of stratospheric winds forces
upward-propagating planetary waves to break at lower and lower levels, exerting a “downward influence”
on tropospheric circulation (Baldwin & Dunkerton, 2001; Baldwin et al., 2003; Hitchcock & Simpson, 2014;
Kidston et al., 2015). The midlatitude jet and storm track shift equatorward, bringing extreme cold spells
and other anomalous weather to nearby regions (Kolstad et al., 2010; Kretschmer et al., 2018a). King et al.
(2019) documents the impact of an SSW on extreme winter weather over the British Isles, the so-called
“Beast from the East” in February 2018. SSWs are a demonstrated source of surface weather predictability
on the subseasonal-to-seasonal (S2S) timescale, a frontier of weather forecasting with many implications for
helping humanity deal with meteorological extremes (Sigmond et al., 2013; Scaife et al., 2016; White et al.,
2017; Vitart & Robertson, 2018; Butler et al., 2019; Lang et al., 2020; Bloomfield et al., 2021; Scaife et al.,
2022). For these reasons, there is keen interest in improving (i) the prediction of SSW itself beyond the
horizon of ∼10 days that marks the current state-of-the-art (Tripathi et al., 2016; Domeisen et al., 2020),
and (ii) understanding of the long-term frequency, seasonal distribution, and other climatological statistics
of SSW.

The ensemble forecasts archived in the S2S project at ECMWF (Vitart et al., 2017) have the potential
to provide more precise statistics than the limited historical data. We describe our data sources in section
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2. To realize this potential requires a method to stitch the short trajectories together, which we outline in
section 3 and describe more fully in Supporting Information. Section 4 presents our main result: with data
consisting of 47-day forecasts over a 21-year period, we estimate rates and seasonal distributions of SSW
events which, depending on severity, occur as rarely as once in 500 years. We discuss the implications in
section 5 and conclude in section 6.

2 Data and definitions

Fig. 1(a,b) show the evolution of zonal-mean zonal wind at 10 hPa and 60◦N (which we abbreviate U10,60),
a standard index for the strength of the stratospheric polar vortex. Black timeseries show U10,60 through
two consecutive winters where SSW occurred, 2008-2009 (a) and 2009-2010 (b), superimposed on its 70-year
climatology in gray from the ERA-5 reanalysis dataset (Hersbach et al., 2020). U10,60 is typically positive
throughout the winter months, characterizing a strong circumpolar jet that forms in the stratosphere during
the polar night. Occasionally, however, the vortex breaks down and U10,60 reverses direction, becoming
negative in the middle of winter. This is the standard definition of an SSW event (e.g., Butler et al., 2015),
but it does not capture the range of intensities between events. Clearly, January 2009 achieved a much more
negative U10,60 level than February 2010. More intense SSW events have been linked to stronger tropospheric
impacts (Karpechko et al., 2017; Baldwin et al., 2021), which motivates our efforts to distinguish between
them. Historical data can provide reasonably robust estimates of moderately rare events such as February
2010, in which U10,60 barely reversed sign; events of this magnitude occur on average every two years. On
the other hand, extraordinary events like January 2009 are quite poorly constrained due to small sample
size, while carrying an outsize risk in a nonstationary climate (Fischer et al., 2021).

To quantify SSW intensity, we vary the the U10,60 threshold—henceforth called U
(th)
10,60—from 0 m/s to

−35 m/s in 5 m/s increments and consider each case separately. Horan & Reichler (2017) and Butler &
Gerber (2018) have suggested the utility of examining different thresholds, as SSW events form a continuum.
Horizontal red lines in Fig. 1(a,b) mark each threshold. Vertical blue lines frame the winter period of
November 1-February 28 in which we allow SSWs to occur, to exclude “final warmings” at winter’s end
when the vortex dissipates for the summer (Black et al., 2006). We only count the first event of the season,

to avoid counting the subsequent oscillations of U10,60 about U
(th)
10,60 as separate SSW events. A minimum

separation time can also be imposed, as in (Charlton & Polvani, 2007), to allow multiple SSWs in a season,
but these are rare and for the purpose of demonstration, we keep the definition as simple as possible.

In addition to reanalysis, panels (a,b) also display a small sample of the S2S dataset in purple. These
are not forecasts but reforecasts, or hindcasts, generated by initializing a present-day model version on past
weather conditions. The S2S archive compiles forecasts and hindcasts from 11 forecasting centers around the
world (Vitart et al., 2017), with a principle goal of tracking improvements in skill from one version to the
next. In this study we restrict ourselves to the ECMWF IFS, although our methodology can be repeated on
other S2S datasets for intercomparison. We use data from the 2017 model version CY43R1, which produced
21 full winters of hindcasts between autumn of 1996 and spring of 2017. These are initialized using ERA-
Interim (ERA-I) reanalysis (ECMWF, 2011), which is is almost identical to the more advanced ERA-5
from the standpoint of U10,60. Two ensembles are launched every week, each with eleven members (one
control and ten perturbed forecasts) that run for 47 days before terminating. We use only the ten perturbed
members, which are initialized using a singular vector method and integrated with stochastic physics schemes
(ECMWF, 2016). This introduces randomness into the ensemble, causing the members to drift apart over
time after the initialization date, as shown in Fig. 1(c,d) for two sample ensembles. The specific strategy for
perturbation of initial conditions and stochastic physics is informed by chaotic dynamical systems theory and
has been refined by decades of numerical experiments (Mureau et al., 1993; Rabier et al., 1996; Palmer et al.,
1998; Gelaro et al., 1998; Leutbecher, 2005; Lawrence et al., 2009; Buizza et al., 1999; Palmer et al., 2009)
aimed at reducing forecast error due to under-dispersion, especially in the face of oncoming flow regime
transitions (Trevisan et al., 2001). In total, the S2S dataset contains over 900 years of simulation time.
Many of them reach farther into the negative-U10,60 tails than reanalysis, allowing us to calculate otherwise
inaccessible probabilities.
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Figure 1: Climatology of polar vortex and illustration of dataset. (a,b): 70-year climatology of U10,60

according to ERA-5, with the middle 40-, 80-, and 100-percentile envelopes in lightening gray envelopes.
Two individual years are shown in black: 2008-2009 (a) and 2009-2010 (b). Two ensembles of S2S hindcasts
(purple) are shown each winter, a small sample from the large S2S dataset of two ensembles per week from the

ECMWF IFS. A range of SSW thresholds U
(th)
10,60 from 0 m/s to -35 m/s are marked by horizontal red lines.

When U10,60 crosses this line from above, an SSW has occurred, provided it happens between the vertical
blue lines marking November 1 and Feb. 28. (c) Schematic of the Markov state model approximation we use
to estimate rates. Blue and orange curves represent the partial trajectories from S2S. At each time step the
data are clustered into discrete boxes, and probability transition matrices estimated by counting transitions
from one day to the next.
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3 Long-timescale dynamics from short trajectories

The advantage of sheer data volume comes with two attendant disadvantages. First, not all trajectories are
independently sampled: on the contrary, all members of an ensemble are initialized close to reanalysis, and
take several days to separate. Thus, the effective sample size is smaller than 900 years. Second, no individual
ensemble can directly provide an SSW probability beyond the 47-day time horizon, which is well short of
the 120 days between November 1 and February 28 when SSWs are allowed to happen. To make use of the
“hanging” trajectory endpoints and infer what might have transpired were the simulation to continue, we
construct a Markov state model (MSM) (Deuflhard et al., 1999; Pande et al., 2010; Chodera & Noé, 2014)
which is sketched in Fig. 1c. At every time sample t = 1 day, 2 days, ..., we partition state space into
a disjoint collection of bins St,1, St,2, . . . , St,Mt

and approximate the transition probability matrix for each
time-step from t to t+ 1,

Pt,t+1(i, j) = P{X(t+ 1) ∈ St+1,j |X(t) ∈ St,i}, (1)

by counting the transitions between corresponding boxes. The matrices are row-normalized, which corrects
for the redundancy and non-independence of ensemble members. Here, X(t) represents the full state vector of
the ECMWF model. This sequence of matrices is the key ingredient that enables all downstream calculations,
and it merits a brief note about the approximations involved. In a low-dimensional space, the partition
could be created with a regular grid. However, every snapshot from the IFS has millions of degrees of
freedom, including temperature and wind velocity in (latitude, longitude, pressure)-regular voxels. Any
attempt to represent the dynamics of all these variables using a model such as (1) would suffer from large
statistical error. On the other hand, if we only attempt to represent the dynamics of a small set of variables,
our approximations may be very biased. To balance these concerns, we build the sets St,i using k-means
clustering of our data on a feature space Φ consisting of time-delays of U10,60:

Φ(X(t)) = [U10,60(X(t)), U10,60(X(t− 1)), . . . , U10,60(X(t− δ))] (2)

where δ = 20 days is the number of retained time-delays, which can range from 15 to 25 with only minor
effects on the results. We have also experimented with richer feature spaces including EOFs of geopotential
height, but found these unnecessary. A growing body of theoretical (Takens, 1981; Kamb et al., 2020) and
empirical (Broomhead & King, 1986; Giannakis & Majda, 2012; Brunton et al., 2017; Thiede et al., 2019;
Strahan et al., 2021) evidence supports the use of time-delay coordinates as reliable features for related
methods. The k-means clustering is carried out using scikit-learn (Pedregosa et al., 2011) with k = Mt

on the collection of hindcast trajectories that were running between days t and t+1. The number of clusters
is set to Mt = 170 or the number of data points available on day t, whichever is smaller.

We use transition path theory (TPT) as a framework for combining several key forecast functions (both
forward and backward-in-time) to compute the steady-state statistics of rare transition events (Vanden-
Eijnden, 2014; Finkel et al., 2020; Miron et al., 2021; Finkel et al., 2021a). TPT is most often applied
in molecular dynamics applications (Noé et al., 2009; Meng et al., 2016; Strahan et al., 2021; Antoszewski
et al., 2021) and is typically formulated in a time-homogeneous setting. The different timescales of climate
applications, in particular the seasonal cycle, demand incorporating time-dependence explicitly, which we
do in a manner similar to (Helfmann et al., 2020). Supporting Information provides more detail on TPT.
All of the key forecast functions can be estimated directly using the transition matrix described above. In
fact, the forecast functions each solve an infinite dimensional Feynman-Kac equation involving the transition
operator of the process (Strahan et al., 2021), and our partitioning of space into clusters corresponds to a
basis expansion approach to solving those equations. This more general perspective motivates the dynamical
Galerkin approximation (DGA) method of which our MSM approach is a special case (Thiede et al., 2019;
Strahan et al., 2021; Finkel et al., 2021b,a). MSMs are similar in spirit to analogue forecasting (van den Dool,
1989), which is enjoying a renaissance with novel data-driven techniques, especially for characterizing extreme
weather (Chattopadhyay et al., 2020; Lucente et al., 2021). Formally, the transition operator encoded by
the matrix in (1) is related to linear inverse models (LIMs; Penland & Sardeshmukh, 1995), which have
also been used to predict atmospheric rivers at the subseasonal timescale (Tseng et al., 2021). Both MSMs
and LIMs are finite-dimensional approximations of the Koopman operator (Mezić, 2013; Mezić, 2005; Klus
et al., 2018). For TPT analysis, however, an MSM is more convenient, which is explained in Supporting
Information.
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Detailed comparison in the following section reveals that the approach sketched here is statistically
consistent with the direct method of sample-averaging over historical SSW events from reanalysis. However,
the MSM approach provides more precise estimates for the rarest of events like the SSW of January 2009.

4 Results

4.1 Rate estimates

Fig. 2 shows rate estimates computed from the S2S dataset using the MSM-based approach outlined in the
previous section, as well as from several reanalysis datasets using the direct counting method. Each circle
indicates a point estimate using all the data from a given source and timespan. In the case of S2S (red)
the circle shows the mean rate from five independent trials with different seeds for k-means clustering. The
thick and thin vertical lines represent the 50% and 90% confidence intervals respectively, estimated from
the pivotal bootstrap procedure (Wasserman, 2004). We treat a full winter as a single unit of data for
resampling, and we resample 40 times with replacement to estimate error bars. Any error bar that reaches
the bottom edge of the logarithmic plot is understood to include zero.

Different reanalysis datasets have different strengths for comparison with S2S. The most direct comes
from ERA-5 (1996-2016)—meaning winter 1996/7-winter 2016/7, inclusive, the same time period as the
S2S data—shown in orange. The S2S integrations from CY43R1 were initialized from ERA-I rather than
ERA-5, but U10,60 is virtually identical in both products (see Fig. S1). ERA-5 (1996-2016) is an appropriate
baseline to compare with S2S, as both make use of the same observations. The key difference is that our

MSM makes use of all the S2S hindcast integrations as well. Across the range of U
(th)
10,60, the S2S rate is less

than or equal to the ERA-5 (1996-2016) rate. However, this does not mean the two results are statistically
inconsistent: 21 flips of a fair coin can yield a range of outcomes, with 6-8 heads (combined probability 0.18)
occurring slightly more often than either of the two most-likely outcomes of 10 or 11 heads (probability 0.17
each). The orange error bars in Fig. 2 show the 50% and 95% confidence intervals of (K/21), where K is a
binomial random variable with n = 21 and p =(the corresponding S2S estimate). In other words, we treat
the S2S estimate as a null hypothesis and consider the real world as a sequence of independent draws from a

probability distribution. For U
(th)
10,60 = −15 m/s and above, the 21-year ERA-5 (1996-2016) point estimates

are well within the 50% S2S confidence intervals, i.e., the interquartile range of K/21. For the more extreme
events, the two estimates remain consistent with 95%-level statistical significance, but ERA-5 (1996-2016)
systematically indicates a higher frequency of extreme events in this 21-year timespan.

What climatology, then, is our MSM rate estimate inferring? Strictly speaking, it is a mixture between
(i) the portion of phase space covered by 1996-2016 observations, and (ii) the model climatology implied by
the IFS, including its stochastic parameterizations. Several recent studies have performed the same task of
filling out a sparse climate distribution using models (Horan & Reichler, 2017; Kelder et al., 2020), but with
uninterrupted long runs of a global climate model. Our technique is novel in using short runs of a weather
model instead.

Does the IFS climatology then correspond to anything in the real world? We can answer this by com-
paring to longer reanalyses, such as the 70-year ERA-5 (1950-2019) shown in gray in Fig. 2. Results are
encouraging: ERA-5 (1950-2019) agrees with S2S in estimating a rate systematically lower than ERA-5
(1996-2016), in other words suggesting this was an historically anomalous period. This tentative trend has
been documented, and may explain some increasing cold-weather outbreaks despite an overall warming planet
(Kretschmer et al., 2018b; Garfinkel et al., 2017). Some studies indicate multi-decadal-scale variations in
SSW frequency due to the quasi-biennial oscillation (QBO), El Niño southern oscillation (ENSO), Atlantic
meridional overturning circulation, and other features of the coupled atmosphere-ocean system (Reichler
et al., 2012; Dimdore-Miles et al., 2021). Hence, the recent barrage of SSWs may represent a temporary
internal fluctuation rather than a secular trend. The consistency of S2S with ERA-5 on more common events,
and the improvement of consistency with record length, is an encouraging signal that the MSM estimate
is extracting a meaningful statistic from the S2S dataset. This lends confidence in the S2S estimate as we
reach farther into the negative U10,60 tail where reanalysis data are too sparse to give any rate estimate.

Longer reanalysis is helpful to generate better statistics. For this, we incorporate one more relevant
product, ERA-20C, which spans the longer period 1900-2007, but assimilates only surface measurements as

6



Figure 2: Rate estimates derived from S2S and reanalysis. Circles show point estimates of SSW
rate according to each data source. S2S error bars show the 50% and 95% confidence intervals in thick and
thin lines respectively, based on 40 bootstrap resamplings. Reanalysis error bars show the middle 50- and
95-percentile envelope of K/n, where K is a binomial random variable with p given by the corresponding
S2S estimate, and n is the number of years in the reanalysis dataset. When an error bar overlaps with a
reanalysis rate, the S2S rate is statistically consistent at the 95% confidence level.

opposed to satellite data (Poli et al., 2016). With these deliberate limitations, ERA-20C likely suffers higher
bias than ERA-5 or ERA-I, but it enjoys lower variance due to its longer timespan. In their period of overlap

(1950-2007, see Fig. S1), they roughly agree on the SSW rates with moderate thresholds of U
(th)
10,60 = 0 and

U
(th)
10,60 = −5 m/s, but otherwise ERA-20C appears biased toward fewer SSW events. Nonetheless, ERA-20C

is our best estimate for the SSW rate over the full 20th century.
In the upper range of thresholds from 0 m/s to −15 m/s, all datasets suggest a linear relationship between

U
(th)
10,60 and rate. In the lower range from −20 m/s to −35 m/s, reanalysis becomes too noisy to discern clear

trends, as these estimates rely on just a few exceptional events like January 2009 (Fig. 1). However, S2S
clearly suggests an exponential trend with an e-folding scale of ∼4 m/s. Events become tenfold rarer as
the threshold is lowered by 10 m/s. These results depend somewhat on parameter choices (see Supporting
Information), but are robust to variations in the delay time δ from 15 to 25 days.

4.2 Probability current

To explain the rate calculation, we briefly expand on the TPT framework, whose real strength is to not
only provide numerical rates, but to decompose them into a sum over possible pathways into the rare event.
The spread of pathways is encoded by the probability current, a vector field JAB(t,x) over state space that
indicates the average tendency of the system X(t) as it passes through state x, conditioned on an SSW
occurring. The subscript AB refers to two distinguished sets A and B in space-time,

A = {(t,x) : t < Nov. 1 or t > Feb. 28} (3)

B = {(t,x) : Nov. 1 ≤ t ≤ Feb. 28, and U10,60(x) < U
(th)
10,60}. (4)

An SSW event can now be defined adhering to the TPT formalism (Vanden-Eijnden, 2014) as a passage of
X(t) from A (the pre-winter part) to B, before returning to A (the post-winter part). Just as the symbol
AB encodes an SSW, the symbol AA encodes a winter without SSW, in which the system departs A in
the fall and re-enters A in the spring without ever hitting B. A second vector field, JAA(t,x), indicates
the average tendency of the system during non-SSW winters. Both currents, JAB and JAA, are computable
in discretized forms from the transition matrices Pt,t+1(i, j) following Metzner et al. (2009). Consistent
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Figure 3: Probability currents. The probability currents JAB (tendency of pre-SSW evolution) and JAA

(tendency of non-SSW evolution) overlaid on the corresponding time-dependent probability densities πAB

and πAA. Horizontal red line shows the boundary of B. The flux density of JAB across ∂B gives the seasonal
distribution shown in Fig. 4.

projections of these reactive currents from the full delay-embedded space down to U10 can be defined following
Strahan et al. (2021) and are shown in Fig. 3. Supporting Information details the visualization procedure.
The streamlines of JAB lead directly to the boundary ∂B of B, whereas the streamlines of JAA avoid this
boundary and lead instead to ∂A (the right edge of the plot). Background shading indicates the corresponding
time-dependent probability densities πAB(t,x) (a) and πAA(t,x) (b), defined as the density of all system
trajectories X(t) destined for an SSW event or a non-SSW winter, respectively. Two samples from each
ensemble are superimposed: 1962-1963 and 2005-2006 as representative SSW winters, and 1966-1967 and
2004-2005 as representative non-SSW winters. The SSW trajectories drop out of the ensemble when they first
enter B. The total probability

∫
πAB(t,x) dx becomes steadily smaller as time progresses, because it is an

average over fewer and fewer events. In fact, one can show (see Supporting Information) that the πAB(t,x)
is identical to the t-component of JAB(t,x), which roughly quantifies how many SSW-bound trajectories
are temporarily maintaining steady—or even increasing—U10,60 before the upcoming event. Note that the
individual trajectories do not track along streamlines of the current: only their average evolution does. For
example, the individual sample trajectories plummet toward B passing through flat JAB arrows, which
account for the other SSW-bound trajectories that still persist at the same time of year.

These vector fields have concrete physical meaning: the field lines of JAB poke through ∂B with a
time-dependent flux density that integrates to the total rate, as seen in the equation∫ Feb. 28

Nov. 1

JAB · n dt =
# SSW events

Year
(5)

where n is the unit vector in state space pointing directly into B; in our case, n = −∇U10,60(x)/‖∇U10,60(x)‖.
Moreover, SSW events can occur at different times during the winter, and the contribution from each time
interval is equal to the corresponding partial flux integral. For example,∫ Dec. 31

Dec. 1

JAB · n dt =
# Dec. SSW events

Year
(6)

This relation allows us to examine more refined details of SSW climatology: the seasonal distribution of
events.

4.3 Seasonal distribution

Past studies have found that seasonal differences are associated with dynamical differences in SSW events.
For example, “Canadian warmings” shift the Aleutian high and occur earlier in the winter (Butler et al.,
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2015). Categorizing SSWs by their seasonality may reveal preferred timings that indicate when and why the
polar vortex is most vulnerable (Horan & Reichler, 2017). Unfortunately, month-by-month rate estimates
from reanalysis are noisier than full-winter rate estimates, as splitting data into finer categories makes the
events even sparser. We can again use S2S data to enhance precision by recruiting the larger database

of partial trajectories. Fig. 4 shows seasonal distributions at two thresholds, U
(th)
10,60 = −15 m/s (left)

and U
(th)
10,60 = 0 m/s (right), according to the same four datasets used in Fig. 2. Each panel displays the

distribution at two resolutions: monthly (hashed) and sub-monthly (solid, and rounded to the nearest day),
both according to the same dataset and with the same total integrals equal to the rate estimate. To express
the seasonal cycle as a probability distribution, we normalize so that all histograms in Fig. 4 integrate to
one, with units of probability per day. The two columns have different vertical scales to see features more
readily.

Several features are noteworthy. For the conventional SSW, U
(th)
10,60 = 0 m/s, the reanalysis histograms all

exhibit a common seasonal trend of steadily rising SSW frequency from November to January and a small
decline in February. The coarse S2S histogram disagrees, with a slight increase in February. Both trends
are consistent with prior studies of seasonality at monthly resolution (e.g., Charlton & Polvani, 2007). At
a finer resolution of ∼ 10 days, however, the S2S histogram reveals a frequency peak in late January/early
February and declines thereafter. The January/February peak is documented in the literature, e.g., by
(Horan & Reichler, 2017), who diagnosed the peak as a balance between two time-varying signals: the
background strength of the polar vortex, and the vertical flux of wave activity capable of disturbing the
vortex. Additionally, the 10-day resolved S2S histogram reveals a smaller December peak, which is absent
from ERA-5 reanalysis and at best noisily present in ERA-20C. The bimodal structure seen in S2S has
also been found tentatively in prior studies with both reanalysis and models (e.g., Horan & Reichler, 2017;
Ayarzagüena et al., 2019). We speculate that the early peak represents Canadian warmings (Meriwether &
Gerrard, 2004), which our result suggests may deserve a more decisive classification.

All three reanalysis-based estimates of SSW distributions have a low signal-to-noise ratio, exemplified by
the intermittent frequency spikes. The hint of a third peak at the end of February is clearer in reanalysis than
S2S, and might be the beginning of the “final warmings”, but its significance is questionable because of the

histograms’ general noisiness. This is even more of a problem at the more extreme threshold U
(th)
10,60 = −15

m/s, where the ERA-5 (1996-2016) has degenerated to two isolated spikes while S2S retains a smoother
shape, with little sign of bimodality. Early December still supports a nonzero rate of extreme SSW events,
but is not a highly favorable time for them. This suggests that whatever distinct SSW type accounts for

the December peak at U
(th)
10,60 = 0 m/s is limited to weaker events. These results are sumathbfJect to all

the caveats of our data-driven procedure (see Supporting Information), but merit further investigation with
numerical models.

5 Discussion

By comparing S2S results with reanalysis, we are measuring the composition of three separate error sources:
(i) forecast model error, (ii) non-stationarity of the climate with respect to SSW events over the reanalysis
period, and (iii) numerical errors in the MSM approach, both statistical (from the finite sample size) and
systematic (from the projection of forecast functions onto a finite basis). We briefly address each error source
in turn.

The S2S trajectories were realized only in simulation, not in the physical world. Accordingly, our S2S
estimates apply strictly to the climatology of the 2017 IFS, a statistical ensemble that could be concretely
realized by running the model uninterrupted for millennia, with external climatic parameters sampled from
their variability in the short 21-year time window of 1996-2016. Such long, equilibrated simulations have
been performed with coarser models by, e.g., Kelder et al. (2020) to assess UK flood risk (the so-called
”UNSEEN” method), and by Horan & Reichler (2017) to assess SSW frequencies, but this is not practical
given the constraints and mission of the ECMWF IFS. Given these constraints, we have assembled our best
approximation using S2S trajectories. Indeed, the S2S dataset is an ensemble of opportunity for us. It was
created to compare the skill of different forecast systems on S2S timescales, not at all for the purpose of
establishing a climatology of SSWs.

The IFS model has proven outstanding in its medium-range forecast skill (Vitart, 2014; Kim et al.,

9



Figure 4: Seasonal distributions of SSW events. Left and right columns show statistics with threshold

U
(th)
10,60 = −15 m/s and U

(th)
10,60 = 0 m/s, respectively, and each row uses a different data source. Each panel

has a hashed histogram at monthly resolution, along with a solid-colored histogram at 1
3 -monthly resolution

(rounded to the nearest day) with an equal area equal to unity. The vertical unit is SSW events per day.
The vertical scales are shared within within each column, but different between columns in order to make

the shape of the histogram at U
(th)
10,60 = −15 m/s more easily visible.
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2014; Vitart & Robertson, 2018). However, there is a caveat that the IFS was designed for short forecasts,
and it is not clear how it would behave if allowed to run for hundreds of years as a climate model, which
requires careful attention to the boundary condition and conservation issues. Even if the climate were to
remain stationary with its 1996-2016 parameters, numerical and model errors would inject some bias into the
equilibrated simulation. Repeatedly initializing S2S forecasts with reanalysis ensures a realistic background
climatology, and allows us to rely on the IFS strictly for the short-term integrations that it was designed for.
Our method may be used as a diagnostic tool to compare different models against each other, with specific
attention paid to their rare event rates. A useful extension of this work would be to repeat the analysis on
multiple data streams from all 11 forecasting centers worldwide that contribute to the S2S project, providing
a new rare event-oriented intercomparison metric.

The rate we estimate with an MSM is the SSW rate of the climate system frozen in its 1996-2016 state.
Comparing with a 70-year reanalysis dataset (ERA-5 1950-2019) measures the departure of the 21-year
SSW climatology from the 70-year climatology, and likewise for the 108-year reanalyis ERA-20C (1900-
2007). Of course, the 21-year SSW climatology itself may be estimated directly from reanalysis, but we have
demonstrated in Fig. 2 that S2S gives more precise estimates that are different from the observations, but
not at a statistically significant level. Our results indicate that according to the 2017 IFS, 1996-2021 was
more similar to 1950-2019 than direct counting of SSW events would suggest, which could of course mean
that the IFS was missing some key climatological variable during that period (Dimdore-Miles et al., 2021).
There is insufficient evidence on the anthropogenic influence on SSW to reject the hypothesis of stationarity
(Ayarzagüena et al., 2020). By running our method on different historical periods, we might discern a more
decisive signal of secular changes than would be available from raw data.

Error source (iii) is the most open to scrutiny and improvement. In a sequence of preceding papers
(Finkel et al., 2021b,a), we have benchmarked the performance of DGA (with a similar MSM basis set) on
a highly idealized SSW model due to Holton & Mass (1976). DGA was originally developed in molecular
dynamics to study protein folding and has been benchmarked on a diverse set of low- and high-dimensional
dynamical systems (Thiede et al., 2019; Strahan et al., 2021; Antoszewski et al., 2021). Our parameter
choices here, detailed further in Supporting Information, are informed by prior experience. Nevertheless,
large-scale atmospheric models are a mostly-unexplored frontier for this class of methods. In this study, we
have worked with static datasets produced by some of the most advanced models in the world; however, an
even more powerful procedure would be to generate data adaptively.

Our method exceeds what is possible directly from reanalysis, but we are not yet fully “liberated” from
observations: every S2S trajectory is initialized near reanalysis, and it only has 47 days to explore state space
before terminating. This fundamentally limits how far we can explore the tail of the SSW distribution. In
other words, the real climate system sets the “sampling measure” which is a flexible but important component
in the DGA pipeline (Thiede et al., 2019; Strahan et al., 2021; Finkel et al., 2021b). On the other hand, with
an executable model, we could initialize secondary and tertiary generations of short trajectories to push into
more negative U10,60 territory and maintain statistical power for increasingly extreme SSW events. This is
the essence of many rare-event sampling algorithms, such as those reviewed in Bouchet et al. (2019) and
Sapsis (2021). For example, a splitting large-deviation algorithm was used in Ragone et al. (2018) to sample
extreme European heat waves and estimate their return times. Quantile diffusion Monte Carlo was used in
Webber et al. (2019) to simulate intense hurricanes, and in (Abbot et al., 2021) to estimate the probability of
extreme orbital variations of Mercury. Many other rare event sampling studies have been performed in fluid
dynamics and other complex systems (Simonnet et al., 2021; Hoffman et al., 2006; Weare, 2009; Vanden-
Eijnden & Weare, 2013; Bouchet et al., 2014; Chen et al., 2014; Farazmand & Sapsis, 2017; Dematteis et al.,
2018; Mohamad & Sapsis, 2018). A natural extension of these various techniques would combine elements
of active rare event sampling with the DGA method. Early developments of such a coupling procedure are
presented in (Lucente et al., 2021).

6 Conclusion

Extreme weather events present a fundamental challenge to Earth system modeling. Many years of simu-
lations are needed to generate sufficiently many extreme events to reduce statistical error, but high-fidelity
models are needed to simulate those events accurately. Conventionally, no single model can provide both,
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simply because of computational costs. Here, we have demonstrated an alternative approach that leverages
ensembles of short, high-fidelity weather model forecasts to calculate extreme weather statistics, with specific
application to sudden stratospheric warming (SSW). By exploiting the huge database of forecasts stored in
the subseasonal-to-seasonal (S2S) database (Vitart et al., 2017), we have obtained plausible estimates of the
rate and seasonal distribution of SSW events that are (i) more precise, and (ii) more robust in distribution
tails, than reanalysis data.

Our method uses data to estimate the dynamics on a subspace relevant for SSW, namely the polar vortex
strength as measured by zonal-mean zonal wind. This single observable, augmented by time-delay embedding,
gives a simple set of coordinates sufficient to estimate rate and seasonal distributions. Our demonstration
opens the door to address many other data-limited questions of basic physical interest. For example, how
important are vortex preconditioning and upward wave activity as triggers of SSW? (Charlton & Polvani,
2007; Albers & Birner, 2014). Do split-type and displacement-type events have fundamentally different
mechanisms and/or different downstream effects? (Matthewman & Esler, 2011; Esler & Matthewman, 2011;
O’Callaghan et al., 2014; Maycock & Hitchcock, 2015). Will climate change affect the frequency of SSW,
perhaps through arctic amplification? (Charlton-Perez et al., 2008; Garfinkel et al., 2017; Kretschmer et al.,
2018b). How do other slow climatic variables, such as ENSO, the QBO, and the Aleutian Low affect SSW
propensity? (Dimdore-Miles et al., 2021). These questions have been addressed in a number of coarse-
resolution climate modeling studies, but high-resolution weather forecast data is an untapped source of
potential for sharpening the answers. Our method offers a way forward, and is highly customizable to
include physical features tailored for the problem at hand.

Another potential application of our methods is catastrophe modeling under climate change. Tropi-
cal cyclones pose a pressing problem for coastal communities, and have motivated several hybrid dynami-
cal/statistical downscaling methods to project risk into the future under various climate change scenarios
(Camargo et al., 2014; Lee et al., 2018; Jing & Lin, 2020; Sobel et al., 2021). Extreme precipitation of many
varieties threatens cities and agriculture and is expected to change significantly with global warming (e.g.,
O’Gorman, 2012; Pfahl et al., 2017). Model resolution, again, is the limiting factor (Laflamme et al., 2016;
O’Brien et al., 2016; He et al., 2019). Enlisting short weather forecasts, as we have done, may help identify
precursors and drivers of changing frequency with unprecedented detail.
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A Supporting information

Our work relies completely on publicly available datasets of reanalysis and hindcasts, which we describe in
the subsequent section. We then lay out the numerical procedure to compute rates and seasonal distributions
using transition path theory (TPT). We then present the formulas used to display results in the main text.
Finally, we document the method used to select parameters.

Dataset description

We use four different datasets for this study.

• S2S: perturbed reforecast (hindcast) ensembles from the 2017 model version of the ECMWF IFS. We
include all trajectories launched between October 1 and April 30 every year from 1996/97 through
2016/17. We downloaded geopotential height and zonal wind fields, sampled daily at time 00:00:00, at
pressure levels 10, 50, 100, 200, 300, 500, 700, 800, 925, and 1000 hPa, and with horizontal resolution
of 3◦ × 3◦ latitude × longitude. We experimented with many feature spaces, and found that simply
zonal-mean zonal wind at 10 hPa and 60◦N (abbreviated U10,60) was sufficient to capture robust rate
and seasonality statistics.

• ERA-Interim: same fields and resolution as S2S, but between 1979/80 and 2017/18.

• ERA-20C: same fields and resolution as S2S, but between 1900/01 and 2007/08.

• ERA-5: only zonal wind at 10 hPa, in order to compare rates.

The first three datasets were downloaded from the ECMWF data portal https://ecmwf.int, and ERA-5
was downloaded from the Copernicus Data Store https://cds.climate.copernicus.eu/.

Each dataset spans a different period and gives somewhat different SSW rates, as shown in Fig. 2 of the
main text. How much of that difference come from the non-overlapping timespans, and how much comes
from the reconstruction methodology? Fig. 5 compares SSW rates in between pairs of reanalyses during
their period of overlap. Circles are point estimates equal to the fraction of winters with SSW. Thick and
thin vertical lines span the middle 50- and 90-percentile ranges according to the pivotal bootstrap procedure
Wasserman (2004) with 40 resamplings. Panel (a) compares ERA-I to ERA-5 for 1996-2016, the same period

as in S2S. The two are almost identical, save for slight differences at U
(th)
10,60 = 0 m/s and U

(th)
10,60 = −25 m/s.

We therefore use ERA-5 (1996-2016) in place of ERA-I for the following comparisons in the main text. Panel
(b) compares ERA-5 and ERA-20C on their period of overlap (1950-2007), revealing decent agreement for
more common events but a low-SSW bias in ERA-20C at more extreme events. For this reason, ERA-20C
should be interpreted cautiously, not as a most-likely estimate but as a lower bound. It is therefore a positive
consistency check that in Fig. 2 of the main text, every threshold where ERA-20C does give a nonzero rate
has a much higher S2S rate.

Numerical procedure

Here we present the computational procedure of Markov state modeling, and how we use it to calculate rates
and seasonality distributions. As stated in the main text, an SSW event is a transition of the atmospheric
state vector, X(t) ∈ Rd, between two sets in space-time,

A = {(t,x) : t < t1 := Nov. 1 or t > t2 := Feb. 28} (7)

B = {(t,x) : t1 ≤ t ≤ t2 and U10,60(x) < U
(th)
10,60}. (8)

We could continue to set up the problem with X as a continuous variable, but for practical purposes we
immediately discretize the process. Our dataset consists of a large collection of short trajectories{(

tn(s),Xn(tn(s))
)

: s = 0, 1, . . . , 46; n = 1, . . . , N
}

(9)
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(a) (b)

Figure 5: Comparison of reanalyses on SSW frequency.

where s represents the elapsed time since the initialization date of the nth trajectory, and tn(s) = tn(0) + s
is the calendar day of the nth trajectory after s days of integration. Each Xn(tn(s)) should be thought of
as a partial realization of the stochastic process X(t) in the time interval tn(0) ≤ t ≤ tn(46).

With the dataset in hand, we execute the following steps.

1. Cluster the data. For every calendar day t we apply k-means clustering to only the snapshots
Xn(tn(s)) such that tn(s) = t, i.e., the trajectories that are running on day t. We cluster using only
the feature space of time-delays of U10,60, after subtracting the seasonal mean and dividing by the
seasonal standard deviation. (The seasonal statistics for a day t are found by aggregating data from
days t − 4, . . . , t + 4.) We set the number of clusters to Mt = 170 by default, but if fewer than 170
trajectories are live on that day we reduce Mt to that smaller number. The outcome of clustering is,
for each calendar day t, a disjoint collection of sets St,1, . . . , St,Mt

and a mapping from snapshots to
clusters. Formally, for s ∈ {0, . . . , 46} and n ∈ {1, . . . , N}, we define the cluster assignment function

Zn(tn(s)) =
[
the cluster on calendar day tn(s) that contains Xn(tn(s))

]
∈ {1, . . . ,Mtn(s)} (10)

=⇒ Xn(tn(s)) ∈ Stn(s),Zn(s) (11)

We can now consider each Zn(tn(s)) as partial realizations of a fully discrete process Z(t) in the time
interval tn(0) ≤ t ≤ tn(46). Furthermore, A and B are transformed to index sets:

A = {(t, z) : t < t1 or t > t2} (12)

B = {(t, z) : t1 ≤ t ≤ t2 and U10,60(z) ≤ U (th)
10,60} (13)

In the last line, U10,60(z) is understood to be the value of U10,60 at the centroid of cluster z. Here we

explicitly ignore “leakage”, in which some data points X with U10,60(X) > U
(th)
10,60 land in a cluster z with

U10,60(z) ≤ U
(th)
10,60. This way, we need cluster the data only once at the outset and can subsequently

calculate quantities of interest for every threshold using the same clustering. A more rigorous procedure
is to separately cluster points inside A and B.

2. Construct the Markov state model. We then estimate T −1 probability transition matrices Pt,t+1

with shape Mt×Mt+1 by counting trajectory transitions between the sets at time t and t+1. Explicitly,
we compute a count matrix

Ct,t+1(i, j) =

N∑
n=1

46−1∑
s=0

1{tn(s) = t}1{Zn(tn(s)) = i}1{Zn(tn(s+ 1)) = j} (14)

for i = 1, . . . ,Mt and j = 1, . . . ,Mt+1
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For the calculations to follow, every row and column of every Ct,t+1 has at least one entry. To
enforce this condition, we artificially insert out-going transitions from any “dead-end” cluster i (with
Ct,t+1(i, j) = 0 for all i) to its four nearest neighbors, with uniform weights. We then do the same for
columns. After this small correction, the transition matrix is estimated as

Pt,t+1(i, j) =
Ct,t+1(i, j)∑Mt+1

j′=1 Ct,t+1(i, j′)
(15)

3. Estimate the three core ingredients of a rate calculation. The TPT framework expresses
rates using the following three functions of space-time. In the discretized state space, they will be
finite-dimensional vectors, one entry for each cluster, and we will be able to compute them recursively.

(a) The probability density π is the climatology of the system on day t, but estimated from S2S data
rather than reanalysis (as in Fig. 1):

πt(z) = P{Z(t) = z} (16)

In our finite-time setting, πt depends on some initial condition π0, which we simply take as
the empirical distribution of S2S trajectories which were live on the first day of available data.
Explicitly,

π0(z) =

∑N
n=1 1{tn(0) = 0}1{Zn(tn(0)) = z}∑N

n=1 1{tn(0) = 0}
(17)

To propagate πt forward in time from t = 0, we use the following simple recursion relation. The
probability of occupying a given cluster j at time t+ 1 can be found by summing transitions into
j from time t:

πt+1(j) =

Mt∑
i=1

πt(i)Pt,t+1(i, j) (18)

This amounts to right-multiplying the vector πt ∈ RMt by the matrix Pt,t+1 ∈ RMt×Mt+1 . Thus,
in T − 1 matrix multiplications, we obtain πt for every timestep.

(b) The forward committor q+ is the probability of an SSW before the end of winter, given some
initial condition:

q+t (z) =


P{Z next reaches B before A|Z(t) = z} (t, z) /∈ A ∪B
0 (t, z) ∈ A
1 (t, z) ∈ B

(19)

We can find the forward committor at time t (“today”) recursively by writing it as a sum over
possibilities at time t + 1 (“tomorrow”). In other words, we decompose the pathway z(t) → B
into a sum of z(t)→ z(t+ 1)→ B over all possible z(t+ 1):

q+t (i) =

Mt+1∑
j=1

Pt,t+1(i, j)q+t+1(j) (20)

Thus, q+t (i) comes from left-multiplying q+t+1 by Pt,t+1. Because the recursion moves backward

in time, we need a terminal condition. Because we have defined A to include all days beyond the
end of winter, the terminal condition is simply q+T (i) = 0 for all i ∈ {1, . . . ,MT }.

(c) The backward committor q−t is the probability that the winter so far is SSW-free; in other words,
that Z(t) last came from A (pre-winter) rather than B (the SSW state):

q−t (z) =


P{Z most recently came from A rather than B|Zt = z} (t, z) /∈ A ∪B
1 (t, z) ∈ A
0 (t, z) ∈ B

(21)
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(a) (b)

Figure 6: Committor probabilities. (Left) Forward committor q+t , the probability of reaching set B (the
SSW state) before returning to A at the end of winter. (Right) Backward committor q−t , the probability
that the winter so far has been SSW-free.

This definition requires some sensible definition of “backward-in-time” dynamics. For this we
construct a time-reversed transition matrix P̃t+1,t ∈ RMt+1×Mt , which we compute using Bayes’
rule:

P̃t+1,t(j, i) = P{Z(t) = i|Z(t+ 1) = j} (22)

=
P{Z(t) = i}P{Z(t+ 1) = j|Z(t) = j}

P{Z(t+ 1) = j}
(23)

=
πt(i)Pt,t+1(i, j)

πt+1(j)
(24)

The requirement of P̃ to be a properly normalized stochastic matrix is why we stipulated that
each column, as well as each row, of the count matrix Ct,t+1 must also have some nonzero entries.

We can now compute q− with the same procedure as q+ above, but now using P̃ and sweeping
forward in time:

q−t+1(j) =

Mt∑
i=1

P̃t+1,t(j, i)q
−
t (i) for t = 1, . . . , T (25)

Because A includes all states at time t = 0, the initial condition for q− is simply q−0 (i) = 1 for all
i ∈ {1, . . . ,M0}.

The forward and backward committors are displayed as functions of (t, U10,60) in Fig. 6. It is the above
calculations that reveal the advantage of an MSM over a linear inverse model (LIM): with a discrete
state space and properly normalized transition matrices, the committor probabilities are guaranteed
to fall between zero and one, while the probability density πt remains properly normalized at each
timestep. No such guarantee exists for calculations with a LIM.

4. Estimate the rate. Given the three quantities above, the rate can be written as a weighted sum over
trajectories leaving A,

Rate =

Mt1∑
i=1

πt1(i)q+t1(i) (26)

or alternatively as a weighted sum over trajectories entering B,

Rate =

t2∑
t=t1

Mt∑
i=1

πt(i)q
−
t (i)

∑
j:(t+1,j)∈B

Pt,t+1(i, j). (27)
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5. Estimate the seasonal distribution. A different decomposition of the rate formula can reveal the
seasonal distribution. More generally than in the two formulas above, one can estimate the rate by
partitioning space-time into two disjoint components, C(A) containing A and C(B) containing B, with
C(A) ∪ C(B) = [0, T ] × Rd, and write the rate as a weighted sum of transitions from one component
to the other:

Rate =

T−1∑
t=0

Mt∑
i=1

1C(A)

(
(t, i)

)
πt(i)q

−
t (i)

Mt+1∑
j=1

1C(B)

(
(t+ 1, j)

)
Pt,t+1(i, j)q+t+1(j) (28)

This formula follows Metzner et al. (2009) and is exact for a discrete Markov chain. We can write it
more compactly by collapsing the π, q−, P , and π terms into a single reactive flux F (AB), such that

F
(AB)
t,t+1 (i, j) = πt(i)q

−
t (i)Pt,t+1(i, j)q+t+1(j) (29)

=⇒ Rate =

T−1∑
t=0

Mt∑
i=1

Mt+1∑
j=1

1C(A)

(
(t, i)

)
1C(B)

(
(t+ 1, j)

)
F

(AB)
t,t+1 (i, j) (30)

F
(AB)
t,t+1 (i, j) is the flow of probability mass per unit time en route from A to B by way of (t, i)→ (t+1, j).

It encodes a discretized version of the continuous-space-time current JAB(t,x) displayed in Fig. 3a.
To make this connection explicit, we identify the boundary between C(A) and C(B) with a surface S,
whose unit normal vector n points into the B side. JAB is then defined implicitly as the vector field
such that ∫

S

JAB · n dσ = Rate (31)

where dσ is a surface element on S. We have chosen to focus on one particular surface of interest:

S = {(t,x) : U10,60(x) = U
(th)
10,60}, i.e., the surface of B itself, which is used in Eq. (27) above. This way,

the crossing time t is identified with the central date of the SSW, and everything inside the outer sum
of Eq. (30) can be considered the probability mass function at t of the seasonal distribution of SSW
events.

Visualization

Figs. 3 in the main text and 6 involve two-dimensional projections of scalar fields and vector fields. We
briefly describe the procedure for projecting scalar and vector fields, which closely follows Strahan et al.
(2021) and Finkel et al. (2021b,a).

After building the Markov state model, and solving for the probability distribution πt(i) for all times t
and clusters i, we assign a weight to each snapshot known as the change of measure:

γ(n, tn(s)) =
πtn(s)(Zn(tn(s)))∑N

n′=1

∑46
s′=0 1{tn′(s′) = tn(s)}1{Zn′(s′) = Zn(s)}

(32)

The change of measure converts the sampling distribution µ—the distribution that x is drawn from—to the
the climatological distribution π. The change of measure obeys the normalization condition

∑N
n=1 γ(n, t) = 1,

which follows directly from the normalization condition
∑Mt

i=1 πt(i) = 1.
Suppose we wish to visualize a function G(t,x) in a low-dimensional space y = Y(x), a vector-valued

observable function with a dimension k much less than the dimension d of x (usually 1 or 2). Abbreviate
Y(tn(s),Xn(tn(s))) as Yn(tn(s)). We discretize the projection space Rk into small pieces dy, and define the
projection

GY(y) =

∑N
n=1

∑T
s=0 1dy

(
Yn(tn(s))

)
G
(
tn(s),Xn(tn(s))

)
γ
(
n, tn(s)

)∑N
n′=1

∑T
s′=0 1dy(Yn′(tn′(s′)))γ(n′, tn′(s′))

(33)
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Figure 7: Behavior of rate estimates as a function of time delay. From upper left to bottom right,
the number of time delays δ increases from 0 to 25 m/s. In every case, the feature space has dimension δ+ 1
(U10,60 at times t, t− 1, . . . , t− δ).

In words, we take a weighted average of G evaluated at all snapshots Xn that map to y under the action
of Y. The weighting is the change of measure, γ.

This formula now positions us easily to project the vector field JAB . For every trajectory that transitions
from (tn(s),Xn(tn(s))) to (tn(s+ 1),x(tn(s+ 1))), we define the projected current

JY
AB

(
tn(s),Z(tn(s))

)
= q−tn(s)(Zn(tn(s)))q+tn(s+1)(Zn(tn(s+ 1)))

[
Yn(tn(s+ 1))−Yn(tn(s))

]
(34)

JY
AB is a vector field with the same dimension as Y. To project it, we simply treat each component as

a scalar field like GY and apply the formula above. This gives us the arrows in Fig. 3a, where the first
component of Y is t itself and the second component is U10,60. Meanwhile, the background color of Fig. 3a
in the main text is the probability density of A → B transition paths, a projection of the product γq−q+,
which happens to be identical to the t component of JY

AB . Fig. 3b shows the analogous current JAA and
density πAA for A → A paths, which simply replaces q+ with 1 − q+ in the formulas above (1 − q+ is the
probability of reaching A, the end of winter, with no SSW).

Feature selection and parameter tuning

We experimented with several feature spaces including empirical orthogonal functions (EOFs) and heat
fluxes, but found simple time-delay embedding of U10,60 to give the best tradeoff between simplicity and
accuracy, as measured by agreement with ERA-5 (1950-2019) for less-extreme SSW events. It is unclear a
priori how many time delays to include, however. We systematically varied the number δ of time-delays
from 0 to 25 and show the results of each in Fig. 7, in the same layout as Fig. 2 of the main text.

The trends with δ are informative. To use δ = 0 is to predict an SSW probability knowing only a
snapshot U10,60. The result is a systematic underestimate of rates. Increasing δ to 5 days already provides
vast improvement, which continues gradually upon increasing δ further. The choice of δ = 20 days seems
to approximately optimize three different notions of plausibility at once: (i) agreement with ERA-5 (1950-
2019) on the more common events, (ii) narrowness of the bootstrapped S2S error bars, and (iii) symmetry
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of the S2S error bars about the point estimates. For time delays less than 15 days, S2S systematically
underestimates rates relative to ERA-5 (1950-2019), and comes with negative error bar skew. This means
that removing a year of data at random tends to pull the estimate systematically downward. As δ increases
to 20 days, the S2S estimates climb steadily toward the ERA-5 rates. Increasing δ to 25 days increases the
S2S estimates even slightly farther, but begins to produce negatively skewed error bars again, a possible sign
of over-fitting. These trends suggest an optimal tradeoff between the expressiveness of the feature space and
the diminishing performance of k-means with increasing dimensionality. Our ultimate choice of δ partially
uses the answer that we want to get, but only for more common SSW events on which reanalysis is reliable.
The true strength of our method is to extrapolate, in a way informed by dynamics, to the more extreme
rates.
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