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Key Points:5
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Abstract12

A leading goal for climate science and weather risk management is to accurately model13

both the physics and statistics of extreme events. These two goals are fundamentally at14

odds: the higher a computational model’s resolution, the more expensive are the ensem-15

bles needed to capture accurate statistics in the tail of the distribution. Here, we focus16

on events that are localized in space and time, such as heavy precipitation events, which17

can start suddenly and decay rapidly. We advance a method for sampling such events18

more efficiently than straightforward climate model simulation. Our method combines19

elements of two recent approaches: adaptive multilevel splitting (AMS), a rare event al-20

gorithm that generates rigorous statistics at reduced cost, but that does not work well21

for sudden, transient extreme events; and “ensemble boosting” which generates phys-22

ically plausible storylines of these events but not their statistics. We modify AMS by split-23

ting trajectories well in advance of the event’s onset following the approach of ensem-24

ble boosting, and this is shown to be critical for amplifying and diversifying simulated25

events in tests with the Lorenz-96 model. Early splitting requires a rejection step that26

reduces efficiency, but nevertheless we demonstrate improved sampling of extreme local27

events by a factor of order 10 relative to direct sampling in Lorenz-96. Our work makes28

progress on the challenge posed by fast dynamical timescales for rare event sampling,29

and it draws connections with existing methods in reliability engineering which, we be-30

lieve, can be further exploited for weather risk assessment.31

Plain Language Summary32

What is the strongest rainstorm that we can expect in a given thousand-year pe-33

riod? To augment the available ∼ 100 years of historical data and to account for climate34

change, computer simulations are a useful, but expensive, tool to answer such questions.35

A model must run for many millennia to deliver an answer with statistical confidence.36

Rare event algorithms provide a promising alternative simulation protocol, in which an37

ensemble of short simulations is biased to produce more extreme events and reweight-38

ing is used to correct for the bias when calculating statistics. However, a classical rare39

event algorithm fails when the events of interest are short and “bursty” (like heavy rain-40

storms) instead of long and slow-moving (like anomalously hot summers). We modify41

the rare event algorithm to make it amenable to precipitation-like events in an idealized42

dynamical system with chaotic traveling waves.43

1 Introduction44

In climate modeling, high spatial resolution is important for realistically represent-45

ing localized extreme weather events like cyclones producing extreme precipitation and46

winds (O’Brien et al., 2016; van der Wiel et al., 2016). But given finite computational47

resources, high resolution has to be traded off with the need for ensembles of models and48

simulations to deal with uncertainty related to model physics, parameters, initial con-49

ditions and boundary conditions including emissions scenarios. Extreme events are par-50

ticularly challenging because they occur infrequently, and hence need large ensemble sizes51

to have their small probabilities accurately quantified. The conflict for computational52

resources therefore comes to a head in the study of extreme events.53

A variety of shortcuts have developed in the past century to alleviate this conflict.54

Leading statistical approaches include extreme value theory (EVT; Coles, 2001) and large55

deviation theory (Touchette, 2009), which respectively describe the behavior of maxima56

and anomalously large running means in random processes. In principle, we can use these57

theories to fit a parametric family to limited data and then extrapolate to even longer58

return periods. EVT has become an important tool in risk assessment and climate change59

attribution (Kharin et al., 2007; Naveau et al., 2020), while large deviation theory suc-60

cinctly encodes the severity of long-lasting, large-area events such as persistent heat waves61

–2–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

(Gálfi et al., 2021). Statistical theories help make the most of a fixed dataset, but pa-62

rameter estimation can be unstable given the restrictive underlying assumptions and the63

limited datasets available (W. K. Huang et al., 2016; Gálfi et al., 2017). For example,64

EVT only holds in the limit of large blocks of data or high thresholds for extremity, which65

directly conflicts with the requirement of many samples for low-variance parameter es-66

timation. Moreover, statistical theories don’t provide spatio-temporal resolved extreme67

events (e.g., the spatial field of rainfall and other fields on the day of an extreme event)68

which are needed to drive impact models.69

Statistical or dynamical downscaling is another way to address the problem of ex-70

tremes by reducing the computational cost of obtaining high-resolution output from long71

simulations or large ensembles (X. Huang et al., 2020; Lee et al., 2020; Emanuel, 2021;72

Saha & Ravela, 2022; Krouma et al., 2022). Downscaling nevertheless has some draw-73

backs. Dynamical downscaling using regional climate models faces the challenge of cor-74

rectly forcing a regional model with output from a different global model, and the re-75

gional model inherits errors in large-scale fields from the global model (Adachi & Tomita,76

2020), while statistical downscaling assumptions can create systematic errors (Schmidli77

et al., 2007) and may not generalize to different climates.78

The focus of this paper is rare event sampling, which is a strategy for allocating79

more of the computational effort towards rare events, and less effort towards the long80

intervening periods of comparatively mild behavior. This is usually achieved by split-81

ting methods, which consist of three steps repeated in a cycle: (1) run an ensemble of82

simulations forward, (2) identify the ensemble members making the most progress to-83

wards the extreme event, and (3) clone these most-promising ensemble members (apply-84

ing small perturbations) while discarding the less-promising members, resulting in a new85

ensemble that is more prone to extremes than was the original ensemble. With repeated86

rounds of splitting, one can populate the tail of the probability distribution more fully,87

while neglecting the more typical behavior of lesser interest. Crucially, in statistical anal-88

ysis of the ensemble, one must compensate for the bias by weighting each clone with a89

factor less than one, relying on the importance sampling formalism. See Bucklew (2004)90

for an introduction to rare event sampling.91

This generic procedure has many possible variants, which have been developed largely92

in the fields of physics (Kahn & Harris, 1951; Giardinà et al., 2006), chemistry (Kästner,93

2011; Zuckerman & Chong, 2017), and reliability engineering (Au & Beck, 2001), but94

have recently started to make an impact on Earth and planetary sciences. For example,95

extreme European heat waves were sampled by Ragone et al. (2018) and Ragone and96

Bouchet (2021) with genealogical particle analysis (GPA), and by Yiou and Jezequel (2020)97

with empirical importance sampling. Wouters et al. (2023) sampled extreme European98

seasonal precipitation accumulations, also using GPA. Webber et al. (2019) developed99

a quantile-based variant of GPA to sample more extreme versions of tropical cyclones.100

Planetary science applications include jet nucleation (Bouchet et al., 2019) and orbit desta-101

bilization (Abbot et al., 2021). For studies of climate, rare event sampling can be ap-102

plied to global models or paired with the dynamical and statistical downscaling approaches103

mentioned earlier.104

We have elected to use a particular rare event algorithm called adaptive multilevel105

splitting (AMS), which was first established by Cérou and Guyader (2007) and is sim-106

ilar to the earlier RESTART algorithm (Villén-Altamirano et al., 1991). Lestang et al.107

(2018) successfully applied AMS to the Ornstein-Ulhenbeck process, while Lucente, Rol-108

land, et al. (2022) and Baars et al. (2021) used AMS to study regime transitions in ide-109

alized climate models. AMS has also been usefully employed in other diverse fields such110

as molecular dynamics and air traffic control (see Cérou et al. (2019) for a recent review).111

The distinguishing feature of AMS is that it operates on the level of full trajectories over112

a fixed time horizon, and applies the small perturbation to trajectories at the instant that113

they first cross a threshold of extremity. The “child” trajectory is identical to its par-114
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ent up until this time, whereas it diverges from its parent afterward to give a new re-115

alization of the extreme event. All ensemble members failing to cross the threshold are116

discarded, and the threshold is then raised for repeated rounds of splitting and killing.117

A related approach, “ensemble boosting”, is a novel technique for generating “sto-118

rylines” of unprecedented climate extremes (Gessner et al., 2021; Gessner, 2022). In this119

approach, one identifies several extreme events from a long climate simulation, perturbs120

the antecedent conditions (1-3 weeks ahead of time), and re-simulates the event to gen-121

erate alternative realities, which sometimes turn out even more extreme. While similar122

to splitting methods, ensemble boosting does not explicitly quantify statistics. As ex-123

plained below, a major goal of this paper is to combine the benefits of ensemble boost-124

ing with that of rare event algorithms, in particular AMS.125

Given the successes in using rare event sampling discussed above, it is desirable to126

also use it to sample shorter-term extreme weather events, such as daily precipitation127

extremes, which have large societal impacts in the current climate (Wright et al., 2021;128

Thompson et al., 2017) and are expected to intensify under climate change (O’Gorman,129

2015; Pfahl et al., 2017; Tandon et al., 2018; Myhre et al., 2019). However, heavy pre-130

cipitation events (or high wind events) have some dynamical characteristics that distin-131

guish them from the previous applications and pose challenges to existing rare event al-132

gorithms. Unlike continental-scale, seasonally averaged anomalies studied previously (Ragone133

et al., 2018; Wouters et al., 2023), heavy precipitation events of interest are often sud-134

den, transient, and relatively small-scale. Their timescale at a particular location is of-135

ten limited by the propagation of the dynamical feature causing the precipitation such136

as cyclones and fronts (Dwyer & O’Gorman, 2017). The strategy used in Ragone et al.137

(2018) and Wouters et al. (2023) relies on some slow-moving notion of progress towards138

the extreme event, naturally given by the integrated temperature anomaly itself when139

targeting extreme seasonal average temperatures, in order to decide which simulations140

to clone or kill. In the precipitation study of Wouters et al. (2023), the extreme event141

is again a seasonal total, for which a mid-seasonal total is a reasonable measure of progress.142

But for individual precipitation events, if one uses precipitation itself to measure progress143

towards the event, and applies perturbations to a simulation when precipitation picks144

up, it is too late for these perturbations to take effect by the time of maximum precip-145

itation. The event simply comes and goes faster than perturbed simulations diverge. Lestang146

et al. (2018) found a similar pathology with AMS when sampling extreme pressure fluc-147

tuations on a body embedded in a turbulent channel flow. There, the extreme events were148

caused by vortices sweeping past the body, roughly analogous to cyclones sweeping past149

a location on Earth, and the rapidity of the fluctuation crippled the effectiveness of the150

standard splitting strategy.151

To isolate and solve the problem of applying rare event algorithms to sudden, tran-152

sient extremes, we postpone the specific application to precipitation and first descend153

the model hierarchy to the Lorenz-96 model (Lorenz, 1996), a spatiotemporal chaotic154

system often used as a toy model for the atmosphere. The model produces extreme events155

posing the same algorithmic challenges as precipitation extremes: intermittent, short-156

lived bursts carried by traveling waves with unpredictable amplitudes. It has been used157

in numerous past studies of extreme event statistics and predictability (Sterk & van Kekem,158

2017; Qi & Majda, 2016; Hu et al., 2019). With this cheap but behaviorally rich model,159

we have developed a simple modification to AMS, drawing inspiration from ensemble boost-160

ing by simply applying a split in advance of the event’s onset by some advance split time161

δ—hence, “trying early” AMS (TEAMS). To make this statistically rigorous, a rejection162

step is necessary, which comes at an efficiency cost, but still enables moderate speedups163

of ∼10 relative to direct sampling. Fig. 1 displays a schematic diagram for TEAMS, which164

will be elaborated in section 3. In fact, TEAMS is a repurposing of a more general method165

called subset simulation (Au & Beck, 2001) from structural reliability engineering, a field166

whose sophisticated rare event algorithms could benefit the climate risk community.167
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Figure 1. Schematic of the splitting step in (a) AMS and (b) TEAMS. Black curves represent

an initial ensemble member, or ancestor, which exceeds the first level ℓ1 and has been selected

for cloning in the first round. In AMS, the perturbation is applied at the instant t0(ℓ1) when the

ancestor first exceeds ℓ1, resulting in a descendant trajectory (blue) which essentially replicates

the extreme event because the separation timescale is longer than the event itself. On the other

hand, in TEAMS (right) we apply the perturbation in advance, by some margin δ > 0. This

can sometimes result in rejection (blue descendant), i.e., failure to cross ℓ1. However, when a

descendant is accepted (red) it will be more distinct from the ancestor than the corresponding

descendant in AMS and have the potential to reach a substantially higher peak value.

This paper is organized as follows. In section 2, we present a stochastically forced168

Lorenz-96 model and the behavior of its extreme events as a function of stochastic forc-169

ing strength. In section 3, we first introduce the general framework of subset simulation.170

In section 3.1, we specialize to AMS, and in section 3.2 we show that AMS fails in the171

low-noise forcing regime, which is often most relevant for weather and climate models.172

In section 3.3, we modify AMS to use a “trying early” step with rejection sampling and173

recover a substantial speedup. In section 4, we further explore the relationship between174

the advance splitting time—a key algorithmic parameter—and classical notions of pre-175

dictability timescales. Finally, in section 5 we point out directions for further develop-176

ment.177

2 Lorenz-96: a customizable spatiotemporal chaotic system178

Lorenz (1996) introduced a simple dynamical system (L96 hereafter) meant to cap-179

ture some crucial aspects of atmospheric dynamics. The model state space consists of180

K (≥ 4) variables {xk}Kk=1 arranged on a one-dimensional periodic lattice, each k rep-181

resenting a longitude sector on Earth. xk represents a generic atmospheric variable like182

wind speed or vorticity and evolves according to the coupled equations183

dxk

dt
= axk−1(xk+1 − xk−2)− xk + Fk, k = 0, ...,K − 1, (1)

where xk+K is identified with xk. The quadratic terms on the right-hand side represent184

advection, like the quadratic nonlinearity in the material derivative of the Navier-Stokes185

equations, which on its own conserves “energy” 1
2

∑
k x

2
k. The linear term −xk repre-186

sents damping due to friction, and the additive term Fk represents external forcing, like187

a meridional insolation gradient. The latter two terms destroy exact energy conserva-188

tion, but balance out in a time-averaged sense to make for a statistically steady state.189

Lorenz (1996) introduced the above model with Fk constant in k and also a version in190

which Fk is a “subgrid-scale forcing” that is a function of an additional tier of dynam-191
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Table 1. Physical parameters for Lorenz-96 system (upper section), and algorithmic parame-

ters for the TEAMS algorithm (lower section).

Symbol Explanation Value or range

K Number of longitude sites 40
a Strength of advection term {1, 0} (mostly 1)
F0 Constant background forcing 6
m Wavenumber for stochastic forcing {1, 4, 7, 10} (mostly 4)
Fm Strength of stochastic forcing at wavenumber m {3, 1, 0.5, 0.25, 0}

N Number of initial ensemble members 128
κ Number of members to kill each round 1
J Number of rounds of splitting 896
T Time horizon 6
δ Advance split time [0, 2]

ical variables representing finer scales, and this version has proven useful for testing stochas-192

tic parameterization schemes (e.g., Wilks, 2005; Hu et al., 2019; Gagne II et al., 2020).193

Here, we also allow Fk to vary stochastically with longitude (k) and time:194

Fk = F0 + Fm

[
η1 cos

(
2πmk

K

)
+ η2 sin

(
2πmk

K

)]
(2)

where η1,2 are independent Gaussian white-noise processes, and m is an integer wavenum-195

ber. Formally, Eq. (2) renders Eq. (1) a diffusion process, using the Itô convention for196

stochastic integrals (Pavliotis, 2014). This simple stochastic forcing is analagous to a stochas-197

tic parameterization in a weather or climate model, and in the AMS framework it allows198

us to easily generate new ensemble members by splitting an existing ensemble member199

at a certain time. We verify below that for weak amplitudes the stochastic forcing does200

not appreciably alter model statistics.201

The parameters used here are summarized in the upper section of Table 1. We set202

K = 40, following Lorenz and Emanuel (1998). We fix the constant part of the forc-203

ing to be F0 = 6.0, which is sufficient for weak turbulence (a larger value would be needed204

with smaller K). We choose the stochastic forcing wavenumber as m = 4 because that205

empirically seems to drive ensemble members apart slightly faster than very small or large206

wavenumbers (see section 4.2). Indeed the stochastically perturbed parameterization ten-207

dencies (SPPT) method developed at ECMWF uses noise that is spatially correlated at208

a ∼ 10◦ length scale (Buizza et al., 1999; Palmer et al., 2009). The amplitude of Fm(=209

F4) will be explored systematically below. One further parameter, the coefficient a, de-210

termines the strength of the advection term. a = 1 is standard for L96, while a = 0211

gives an array of correlated Ornstein-Uhlenbeck (OU) processes (Pavliotis, 2014). Re-212

taining the OU process as a special case of L96 is useful to provide a reference case on213

which existing rare event splitting algorithms excel. Results for a = 0 are shown in sup-214

plementary Figs. S1 and S2, and all other results presented are for a = 1.215

Fig. 2 displays short numerical integrations of L96 with four different parameter216

choices. We used the Euler-Maruyama method with a timestep of 0.001 to integrate Eq. (1),217

saving out every 0.05 time units. For comparison, Lorenz and Emanuel (1998) interpret218

a single time unit as 5 days. The left column shows single-site variables x0(t) for each219

parameter set, while the right column shows corresponding Hovmöller diagrams. In the220

standard deterministic system F4 = 0 in the top row, x0(t) fluctuates with a semi-regular221

period of ∼ 2 time units (10 “days”) but with irregular amplitudes, the largest of which222

are precisely the extreme events we choose to study here. The Hovmöller diagram re-223
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Time evolution of the L96 model expressed as timeseries of x0(t) (left column) and

Hovmöller diagrams (right column) with three different levels of stochastic forcing. (a,b) have

F4 = 0 (the deterministic system); (c,d) have F4 = 1 (moderate forcing); (e,f) have F4 = 3

(strong forcing).

veals these fluctuations to arise from a field of traveling waves, with roughly eight peaks224

and troughs moving with negative (“westward”) phase velocity. The waves experience225

intermittent disturbances, sometimes getting stuck in place for several turnover times226

and setting up favorable conditions for extreme events. Globally, these stagnations man-227

ifest as kinks that propagate in the positive (“eastward”) direction. This is reminiscent228

of atmospheric Rossby waves, whose phase and group velocities have opposite signs (up229

to a Doppler shift due to the mean flow) (Lorenz & Emanuel, 1998). Thus, we can loosely230

think of the peaks and troughs as being like highs and lows in the midlatitude atmosphere.231

Fig. 2 rows 2 and 3 show analogous pictures for moderate (F4 = 1) and strong232

(F4 = 3) stochastic forcing, respectively. As noise increases the traveling waves tran-233

sition from unidirectional to zigzagging. The timeseries become more jagged and more234

liable to take large excursions from their mean and hover there for longer durations.235

Fig. 3a overlays PDFs of the single-site value (x0) for all these parameter regimes,236

plus two more: F4 = 0.5 and 0.25. Reducing the noise roughly preserves the mode but237

shrinks the tails. The PDF appears basically converged for F4 ≤ 0.5. Fig. 3b confirms238

this is true even in the far tail, with a log-transformed plot of return level vs. return time239

for x2
0. The limiting case F4 = 0 has a bounded tail, which is easy to see with an en-240
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ergy argument (see also Qi and Majda (2016)): defining x = 1
K

∑K
k=1 xk, the energy241

E = 1
2

∑
k x

2
k evolves as dE

dt = −2E + KFx. Since |x| ≤
√

x2 =
√

2E/K by the242

Cauchy-Schwarz inequality, the first term dominates for E larger than some critical E0,243

which must therefore bound the steady-state distribution’s tail. However, E0 would in-244

crease with K, i.e., higher-dimensional systems can in principle support heavier tails (e.g.245

Lucarini et al., 2016, ch. 4 discusses general relationships between the shape parame-246

ter and the attractor dimension). This is part of our motivation to set K relatively large.247

The return level vs. return period plot (as in Fig. 3b) will be used throughout the248

paper, and we calculate it using the “modified block maximum” method of Lestang et249

al. (2018). For a fixed return level ℓ, the return period τ(ℓ) is defined as the mean (over250

initial conditions and noise realizations) of the waiting time until an exceedance occurs:251

τ(ℓ) = E[min{t : R(x(t)) > ℓ}], where R is some observable of interest for the dy-252

namical system. We take R(x) = x2
0, the local energy (times two) at longitude k = 0.253

Lestang et al. (2018) approximates the exceedance times by a Poisson process for high254

ℓ to give255

τ(ℓ) = − T

log
[
1− pT (ℓ)

] . (3)

where pT (ℓ) is the probability of at least one exceedance in a fixed time T . pT (ℓ) can256

be estimated from any collection of length-T blocks of data—either from a single con-257

tinuous timeseries or not. This is very useful because rare event splitting algorithms gen-258

erate branching trees of short trajectories, from which we can estimate block-wise ex-259

ceedances but not return times directly.260

To produce Fig. 3b, we started with simulations of length 1.28 × 106 (after dis-261

carding the first 50 for spinup), split them into B blocks of length T = 6, and measure262

the maxima M1, ...,MB of x2
0 over each block. Letting M(b) denote the bth largest block263

maximum, we use the empirical (complementary) CDF estimator, p̂T (M(b)) = b/B. Hence,264

the return curve should interpolate the ordered pairs (τb, ℓb) =
(
− T

log(1−b/B) ,Mb

)
. Be-265

cause it is common to think of ℓ as a function of τ , and to consider logarithmically spaced266

return periods, we linearly interpolate M(b) over log τB to get a curve ℓ̂(τ). We bootstrap267

to estimate uncertainty, resampling the blocks 1, ..., B with replacement and repeating268

the above procedure 5000 times. Shading indicates the basic bootstrap 95% confidence269

interval (Wasserman, 2004), meaning ℓ̂(τ)+(ℓ̂(τ)−ℓ∗0.975(τ), ℓ̂(τ)−ℓ∗0.025(τ)), where ℓ∗α270

denotes the αth quantile of the bootstrap distribution of ℓ̂ for each τ . Note that when271

ℓ∗0.025(τ) is much less than ℓ̂(τ), we get a very large upper bound on the confidence in-272

terval, because it suggests via the basic bootstrap philosophy that ℓ̂(τ) could be very much273

less than the true parameter ℓ(τ). The lowest-noise curves are close to within uncertainty274

even in the far tails, demonstrating the convergence of extreme value statistics for F4 ≤275

0.5. This confirms that stochastic forcing, when sufficiently weak, does not alter the sys-276

tem’s statistics very much, which allows us to approximate the deterministic system’s277

rare events while remaining within the AMS framework which relies on explicit random-278

ness.279

The longest return period estimable by this method of “direct numerical simula-280

tion” (DNS) is ∼ 8 × 105, the simulation’s length. Rare event algorithms can sample281

physical realizations of extreme events at long return periods τ(ℓ) with much less com-282

putation time than τ(ℓ), but have not yet been applied to local events in L96 with weak283

stochastic forcing. Wouters and Bouchet (2016) did apply rare event algorithms to L96,284

but their system parameters differed substantially from ours, with F0 = 256 giving a285

much more turbulent regime reminiscent of a stochastic process. Moreover, their target286

quantity of interest was a globally averaged energy, whereas we target local energy at287

one longitude as a closer analogue to extreme precipitation or winds hitting a particu-288

lar location.289
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(a) (b)

Figure 3. Steady-state statistics of the L96 model as a function of noise strength, calculated

from a long simulation of length 1.28 × 106. (a) Histograms of the model variable at one site (x0)

and (b) return level vs. return period for (twice) the local energy x2
0. Shading in (b) represents

95% bootstrapped confidence intervals from the modified block maximum method. See text for

details.

The parameters a and F4 allow us to test the performance of AMS for a range of290

problems, from systems on which AMS performs well to more difficult systems akin to291

the extreme local precipitation problem. a = 0 (the OU process) is an easy setting for292

AMS; a = 1 with large noise F4 is harder, but still doable because of the dominance293

of noise. Shrinking F4 further, towards the system of actual interest, gradually renders294

standard AMS ineffective and leads us to a modified version of the algorithm called TEAMS295

that allows for early splitting. The next sections present the basic algorithm and its mod-296

ification along this parameter path.297

3 Subset simulation298

TEAMS (and the special case AMS) may be viewed as a version of subset simu-299

lation (SS), which we use to frame our overall approach, and which we believe has con-300

siderable potential for application to climate problems. SS was introduced in Au and Beck301

(2001) and has been most widely used in structural reliability engineering (X. Huang et302

al., 2016). For a short pedagogical introduction, see Zuev (2015). The description be-303

low will introduce several tunable algorithmic parameters, which are summarized in the304

lower section of Table 1.305

The goal is to estimate the probability that a random variable x from a distribu-306

tion ρ gives rise to large values of some quantity of interest S(x),307

p(ℓ) =

∫
I{S(x) > ℓ}ρ(x) dx = Eρ

[
I{S(X) > ℓ}

]
, (4)

given only the ability to draw samples X1, X2, ... ∼ ρ. I{·} denotes the indicator func-308

tion: one if the argument is true, zero if false. For us, each Xi = {Xi(t) : 0 ≤ t ≤ T}309

is a length-T trajectories of L96 (with stochastic forcing); the score function is a max-310

imum over the interval, S(X) = max0≤t<T R(X(t)); and ρ(x) is the distribution over311

trajectories of length T induced by the stochastically forced L96 system. In structural312

engineering, X might be the state of a building or dam, with ρ(x) induced by a prob-313

ability distribution over external stresses like wind, earthquakes, or rainfall, while S(x)314

would measure the proximity to failure. Because the probabilities of interest are very small,315

a set of independent samples {Xn}Nn=1 from ρ will usually have few if any exceedances,316

making the “vanilla” Monte Carlo estimate of p(ℓ) (the fraction of exceedances) subject317

to high relative uncertainty. The ratio of the estimator’s variance to its mean is approx-318

imately 1/
√
Np(ℓ) (Zuev, 2015). If we want to aim for a tenfold-longer return period319
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with the same uncertainty, we need to generate tenfold more samples. Worse, to reduce320

uncertainty tenfold we would need one hundredfold more samples, which may be unten-321

able.322

SS breaks down this task into a sequence of easier tasks by setting up a series of323

intermediate levels ℓ1 < ℓ2 < ... < ℓJ = ℓ where J is the number of levels, and esti-324

mating a sequence of conditional probabilities P{S(X) > ℓj+1|S(X) > ℓj} =: p(ℓj+1|ℓj),325

which all have moderate magnitudes and are expected to be easier to estimate. Their326

product provides an estimate for the target probability:327

p̂SS(ℓ) = p̂(ℓ1)p̂(ℓ2|ℓ1)...p̂(ℓJ |ℓJ−1). (5)

The first term can be estimated by vanilla Monte Carlo: generate N samples X1, ..., XN ,328

and attach unit weights to each: Wn = 1 for n = 1, ..., N . Rank the samples by S so329

that S(X(1)) ≤ S(X(2)) ≤ ... ≤ S(X(N)), and let p̂(ℓ1) = (N − κ1)/N , where κ1 is330

chosen so that S(X(κ1)) ≤ ℓ1 < S(X(κ1+1)). The parameter κ1 is the number of tra-331

jectories that are “killed” meaning they don’t appear in the first subset (see below). For332

the case of AMS, κ1 is chosen as a parameter of the algorithm, and ℓ1 is then set adap-333

tively as ℓ1 = 1
2 [S(X(κ1)) + S(X(κ1+1))].334

The second term p̂(ℓ2|ℓ1) is estimated with a splitting strategy in which we focus335

in on the “subset” of samples that exceed the first threshold: {S(X) > ℓ1} containing336

samples X(i) with κ1 < i ≤ N . To better sample this subset, we spawn additional sam-337

ples from it via a “Modified Metropolis algorithm”:338

1. Initialize a list X1 = {X(κ1+1), ..., X(N)}, which will eventually grow to a (user-339

chosen) size N1 as well as a first-in-first-out queue Q of the same elements but in340

a random order: the “parent queue”.341

2. Pop Q to yield the next parent X. Apply some small perturbation to X to gen-342

erate a new sample X̃, which itself is drawn from ρ but correlated to X. A gen-343

eral way to do this is with one step of the Metropolis-Hastings algorithm which344

involves an accept/reject step, but an easier approach is available in the partic-345

ular case of AMS as described in the next section.346

3. Evaluate S(X̃). If it exceeds ℓ1, we have successfully generated a new sample from347

the subset. Accept the new sample, meaning insert X̃ into both Q and X1 and as-348

sign it a weight equal to that of its parent X. Otherwise, if S(X̃) ≤ ℓ1, reject349

X̃. Re-insert X into Q and add a copy of X to X1. (In implementation, we don’t350

store two copies of the high-dimensional object X, but rather we assign a multi-351

plicity to each member and increment X’s multiplicity by one.)352

4. Repeat steps 2 and 3 until X1 has N1 elements (counting multiplicity).353

5. Multiply the weights of all members of X1 by a factor (N −κ1)/N1, which pre-354

serves the total weight N of the original ensemble {Xn}Nn=1 while spreading that355

weight over more members.356

Having expanded to N1 samples from the subset {S(X) > ℓ1}, we can now pro-357

ceed to the next level and generate additional samples from the next subset {S(X) >358

ℓ2} so that it contains N2 samples, where ℓ2 can be determined adaptively as an order359

statistic of X1, i.e., the average of the κ2th and the (κ2+1)th ranked values. The same360

procedure is repeated to generate the next subset X2 (and Q is initialized with only unique361

elements, not counting multiplicity, in order to maintain as much diversity as possible).362

X3,X4, ...,XJ are generated in the same fashion, until either a computational budget is363

reached, an ultimate target threshold is overcome, or some other halting criterion is met.364

Ultimately we are left with a weighted ensemble {(X1,W1), ..., (XM ,WM )}, where365

M = κ1 + κ2 + ... + κJ + NJ . The sampling {S(Xm)}Mm=1 is over-represented in the366

tails, but with correspondingly smaller weights there, and all weights sum to N . Any ex-367
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pectation of an observable Φ(x) can be estimated as368

E[Φ(X)] =

∫
Φ(x)ρ(x) dx ≈ Φ̂ =

1

N

M∑
m=1

Φ(Xm)Wm. (6)

The SS algorithm will generally help to improve this estimate for functions Φ most sen-369

sitive to the tail region of S(x), rather than its central bulk. In particular, setting Φ(x) =370

I{S(x) > ℓ}, we recover the estimator p̂SS(ℓ):371

E[I{S(X) > ℓ}] = p(ℓ) ≈ 1

N

∑
m:S(Xm)>ℓ

Wm = p̂SS(ℓ). (7)

An important set of algorithmic choices are the population parameters N,N1, ..., NJ ,372

the killing numbers κ1, κ2, ..., κJ , as well as the halting criterion which determines J . Cérou373

et al. (2019) reviews theoretical bases for several different choices, but here for simplic-374

ity we opt for the same rule as used in Lestang et al. (2018): κj = κ = 1 (the “drop375

1” rule) and Nj = N for all j = 1, ..., J (the population is replenished after each new376

level is set). Note that with κj = 1, only a single parent is selected from Q at each round377

before the level is raised and the queue re-initialized.378

3.1 Adaptive multilevel splitting (AMS)379

AMS (in particular “trajectory AMS (TAMS)” in the nomenclature of Lestang et380

al. (2018)) can be seen as a special case of SS where each X = {X(t) : 0 ≤ t ≤ T} is381

a length-T trajectory of a stochastic dynamical system, S(X) = max0≤t<T R(X(t)) for382

some time-dependent score function R, and with a particular choice for splitting trajec-383

tories. Trajectories are split by constructing a new forcing sequence η̃(t) (η̃1,2(t) for our384

L96 model) to drive the child trajectory X̃(t) starting from the old forcing sequence η(t)385

that drove the parent. First, copy the initial condition X̃(0) = X(0). Then, copy η̃(t) =386

η(t) up until some split time tsp, which is chosen as first time t0(ℓ) that the parent clears387

the threshold:388

tsp = t0(ℓ1) = min{t ∈ [0, T ] : R(X(t)) > ℓ1}. (8)

For following times t ≥ tsp, swap in a new and independent noise forcing sequence for389

η̃(t). No Metropolis-style accept/reject step is needed for step (2) above; each newly sam-390

pled Brownian increment of η̃(t) is drawn independently from N (0,∆t), and so η̃(t) is391

a proper sample from the same noise-generating distribution as η(t). Furthermore, the392

choice of tsp = t0(ℓ1) guarantees X̃(t) = X(t) for all t ≤ t0(ℓ1), so that S(X̃) > ℓ1,393

and acceptance is guaranteed in step (3) as well.394

The change in forcing for t ≥ tsp will cause the child to diverge from the parent,395

producing a new—but correlated—sample (Fig. 1a). How correlated X̃ is to its parent396

X depends on tsp, with later tsp implying a longer shared history and less independence.397

Applying the split at tsp = t0(ℓ) maximizes the independence of the child—and ulti-398

mately the diversity of the AMS ensemble—while guaranteeing S(X̃) exceeds ℓ1, and there-399

fore is accepted in the modified Metropolis Algorithm. The same procedure is carried400

out for every subsequent level.401

We performed a sequence of AMS experiments with the following parameters:402

1. Physical constants and timescales: F4 ∈ {3, 1, 0.5, 0.25} for the default case a =403

1 which gives the stochastically forced L96 model, and F4 = 3 for the case a =404

0 which gives the OU process (shown in supplementary Figs. S1 and S2). We fix405

F0 = 6, and K = 40 throughout, and set the time horizon to T = 6.406

2. Ensemble sizes and population control: N = Nj = 128 and κj = 1 for j =407

1, 2, ..., J = 896 adhering to a fixed computational budget of 1024 time horizons408
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simulated. One additional halting criterion is imposed: if the population loses so409

much diversity that all active ensemble members descend from the same ances-410

tor, we terminate the algorithm early.411

3. We repeat the whole procedure M = 56 times for each parameter set, with dif-412

ferent seeds for pseudo-random number generation. Each repetition will be called413

a “run” of AMS. Having multiple runs allows us to assess variance, and by using414

pooled estimates from all runs to hedge against stagnation within local optima of415

phase space in a particular run.416

The initial N -member ensemble is generated as a sequence of consecutive blocks417

from a moderate initialization simulation of length N×T (T = 6 is the time horizon),418

after discarding the first 50 units as spinup. The spinup is initialized as xk(0) = F0+419

1
1000 sin

(
2πk
K ). The random number generator used to create the noise forcing sequences420

η1,2(t) is seeded with s ∈ {0, ...,M−1}, a different value for each AMS run with a fixed421

parameter set. The N initial blocks, although weakly correlated, comprise a sample from422

the steady-state distribution of the stochastic L96 system. Larger N reduces the vari-423

ability of the AMS results, but it also means more up-front cost and more rounds of split-424

ting needed to reach return times long enough to make the algorithm worthwhile.425

We compare our results from AMS to a long DNS simulation of length 1.28×106426

(separate from the initialization), which is then further elongated by a factor of 40 (con-427

catenating all K timeseries end-to-end) into 5.12×107, exploiting the statistical equiv-428

alence of all K = 40 sites of L96. This curve is our best estimate of ground truth. Note429

that the symmetry is only exploited to extend the DNS estimate, not the AMS estimate.430

In a climate model with zonal inhomogeneities, such as continents, it would be inappro-431

priate to aggregate different longitudes together.432

Fig. 4a,b illustrates the effect of successive mutations over the course of the AMS433

algorithm, on the relatively easy test case with strong stochastic forcing, F4 = 3 and434

a = 1 (the even easier case of a = 0—the OU process with no interference from advection—435

is documented in Lestang et al. (2018) and included in supplementary Figs. S1 and S2436

for completeness). By design, the levels increase monotonically over the course of gen-437

erations and the descendant scores march upward, ultimately mutating the moderate an-438

cestor into an extreme descendant. Going beyond this successful “anecdote”, Fig. 5(a,b,c)439

confirm the benefit of AMS for a statistically accurate sampling of the distribution’s tails.440

Fig. 5a shows return period curves calculated with the modified block maximum method441

according to three datasets: the full weighted ensemble from AMS; the initialization (“Init”),442

consisting of N ensemble members per AMS run; and the long DNS simulation. The re-443

turn levels are interpolated onto a common logarithmically spaced grid of return peri-444

ods for easy comparison between the three data sources. Whereas return level estimates445

based on the initializations alone (blue) scatter considerably around the ground truth,446

AMS provides a tighter range of estimates (red) around the ground truth, and for ∼ 3447

orders of magnitude-longer return periods, at only 8 times the cost of initialization (1024448

members from an initial 128). Moreover, each AMS run is ∼ 5000 times less costly than449

the DNS run that gave the ground truth curve; altogether, the 56 AMS runs are ∼ 100450

times less costly.451

Another way of comparing AMS to DNS is by pooling together all members from452

the 56 ensembles and considering them as one larger ensemble of size 56×1024 = 57344.453

Fig. 5b shows the resulting statistics which have the advantage of extending to consid-454

erably longer return periods than the individual AMS runs. Here, as in Fig. 3, the er-455

ror bars are given by the basic bootstrap 95% confidence interval using 5000 bootstrap456

samples, but in the case of DNS (gray error bar), each bootstrap resampling contains457

only enough blocks to match the total simulation time used by AMS (including all in-458

dependent runs). This lets us compare the uncertainties fairly between the two meth-459

ods. In the case of AMS error bars, the members within a single run are not indepen-460
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 4. Scores for single ancestors and their descendents within the AMS algorithm (special

case of TEAMS with δ = 0). For each stochastic forcing amplitude, 56 independent runs of AMS

were carried out (indexed 0-55) with N = 128 ensemble members (0-127). (a) Time-dependent

score function R(X(t)) for the 7th initial ensemble member (ancestor) of run 14 for F4 = 3. A

black circle indicates the scalar score S(X) = maxt R(X(t)). R(X(t) and S(X) are also shown

for a single lineage (path down the family tree) in a sequence of brightening colors, ending with

the highest scoring descendant’s score in red. (b) Scores in gray dots, with the horizontal axis

numbering all descendants from ancestor 7 of run 14 for F4 = 3. Colored circles indicate those

descendants in the lineage from (a). The dashed gray curve indicates the levels ℓ from which

each descendant was split. (c,e,g) are the same as (a), and (d,f,h) are the same as (b), but with

stochastic forcing strength decreasing to F4 = 1, 0.5, and 0.25 respectively. In each case, the run

and ancestor were hand-selected among the ancestors with the maximum boosting.
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

DNS 
same 
cost as 
TEAMS

Figure 5. Performance of the AMS algorithm (special case of TEAMS with δ = 0). (a) Re-

turn level vs. return period plots for F4 = 3. Blue lines show estimates from the initial 128 mem-

bers of each AMS run; red lines show estimates from the completed AMS runs; black line shows

DNS. (b) Return level vs. return period for a pooled AMS ensemble containing all 56 × 1024

members. Blue and red envelopes indicate 95% confidence intervals (see text for details). Gray

envelope is a 95% confidence interval based on subsets of DNS equal in total cost to the 56 AMS

runs. Thus, the dashed red line and shading from AMS is of equal cost to the gray shading from

DNS. (c) Unweighted histogram of scores for AMS initialization (blue), completed AMS (red),

and DNS (black). Following rows are same as first row, but with noise decreasing to F4 = 1, 0.5,

and 0.25, respectively. The slight variability in TEAMS costs listed to the left are due to the

early halting criterion of one single ancestor remaining (see section 3).
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dent of each other, and so we resample the AMS runs. That is, we sample the numbers461

{0, ..., 55} 5000 times with replacement, and for each resampling we pool together all mem-462

bers from the corresponding list of AMS runs, including repetitions. Fig. 5c shows the463

unweighted histogram of scores coming from the three data sources. The difference in464

shape of the AMS histogram compared to the DNS histogram demonstrates the main465

effect of AMS: to undersample the low end of the distribution and oversample the tail,466

shifting the computational burden to where it is more useful for sampling extremes.467

We consider AMS to “win” over DNS if either of two criteria are met: (i) the AMS468

estimate remains close to the DNS (relative to error bar width) for return periods well469

beyond the AMS total simulation time TAMS; (ii) the AMS error bar is much smaller than470

the DNS error bar at TAMS. Under strong stochastic forcing, AMS performs very well471

by both criteria, accurately (and confidently) estimating return periods as long as 107472

in the pooled estimate using only 3.4×105 time units of computation. This aligns with473

the demonstration in Lestang et al. (2018) for the OU process, and serves as a depar-474

ture point for our modification of the algorithm.475

3.2 Failure of AMS in the regime of weak stochastic forcing476

The story gets more complicated when the stochastic forcing is weak and nonlin-477

ear dynamics dominate. In deterministic chaos, perturbations grow exponentially with478

a rate inversely proportional to the Lyapunov timescale—at least, so long as the pertur-479

bations remain infinitesimal. Only after several elapsed Lyapunov times—what we call480

the divergence timescale, quantified further in section 4—do perturbations become large481

enough to be useful for splitting algorithms, but also at which size nonlinear effects take482

over. In contrast to deterministic chaos, white noise realizations diverge immediately.483

The stochastic L96 system inherits both behaviors to some extent, determined by the484

relative strength of stochastic forcing. Our main thesis is that when nonlinear dynam-485

ics dominate, and divergence time exceeds the duration of the event of interest, standard486

AMS is inadequate, but this can be remedied by adjusting the choice of splitting time487

tsp as shown in the next section.488

Fig. 4c-h show ancestors and descendents for AMS, analogous to Fig. 4a,b and with489

identical algorithmic parameters, but with decreasing levels of stochastic forcing: F4 =490

1, 0.5, 0.25. For all four stochastic forcing strengths, ancestors can spawn more extreme491

descendants. However, there is a key difference between the strong- and weak-stochastic492

forcing regimes. With strong stochastic forcing F4 = 3 (Fig. 4a,b), each descendant along493

the lineage improves upon the same event. In other words, the sequence of maximum494

scores comes from a peak in the timeseries for R(X(t)) that grows taller and taller, drift-495

ing only slightly forward in time. With weaker stochastic forcing (Fig. 4 c-d, e-f and es-496

pecially g-h), events tend to see only modest boosts from generation to generation. The497

only way for a child X̃ to improve substantially over its parent X is by creating a whole498

new event—a new peak later in the time horizon—rather than building on an existing499

event. This happens because the stochastic forcing is too weak to open a large gap be-500

tween R(X̃(t)) and R(X(t)) during the short interval between the splitting time t0(ℓ),501

when R(X(t)) first exceeds ℓ, and the peak argmaxtR(X(t)). The child ends up essen-502

tially replicating the parent’s peak, which is the same behavior illustrated schematically503

in Fig. 1a. The characteristic time scale of the peak (what we will call the event dura-504

tion) is set by the zonal propagation of waves, and this timescale is not long enough com-505

pared to the divergence time for AMS to work well. The same phenomenon was observed506

in Lestang et al. (2020)): extreme spikes in the force on a body in a turbulent channel507

flow (see their Fig. 14) could not be boosted via AMS, which was attributed to the “sweep-508

ing” of vortices past the body. Similar reasoning holds for the zonal propagation of waves509

in L96 and the passage of midlatitude cyclones or fronts past a location in the midlat-510

itudes.511

–15–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Fig. 5 summarizes the performance of AMS for different strengths of stochastic forc-512

ing. The suspicion of failure raised by Fig. 4 is confirmed by the clear degradation of per-513

formance as F4 shrinks. In particular, the individual AMS return level curves tend to514

fall farther and farther underneath the true return level curves (left column of Fig. 5).515

There is a large scatter in the individual runs, and in the case F4 = 0.5, a lucky few516

of the 56 runs salvage the pooled estimate for a decent approximation of the DNS re-517

turn levels, but the width and asymmetry of the confidence intervals indicate the unre-518

liability of this result (Fig. 5h). The problem becomes particularly acute as F4 drops to519

0.25, with the individual AMS runs barely improving upon the initial scores (Fig. 5j) and520

a large underestimate at longer return periods for the pooled estimate (Fig. 5k).521

It thus appears that standard AMS is dead on arrival for cases where the diver-522

gence timescale is longer than the event duration. In principle, there is a canonical fix523

for this problem, namely to use a more intelligent score function than the quantity of524

interest R(X(t)) itself. The ideal such proxy is the committor : the probability, given an525

initial condition X(t) = x, that R(X(s)) will exceed ℓ at some time s ∈ (t, T ) before526

the time horizon ends. By definition, the committor incorporates information about the527

model state X(t) that is not available from R(X(t)) = x2
0, for example the speeds and528

magnitudes of different wave packets scattered across the domain that may all soon con-529

verge at k = 0 and result in an extreme burst of energy. The committor is an optimal530

score function for AMS in terms of minimizing the variance for p̂(ℓ) (Lestang et al., 2018;531

Cérou et al., 2019; Lucente, Rolland, et al., 2022). Considerable research has recently532

pursued approximation strategies for the committor in various climate applications (e.g.,533

Tantet et al., 2015; Finkel et al., 2021; Lucente, Herbert, & Bouchet, 2022; Miloshevich534

et al., 2023; Jacques-Dumas et al., 2023).535

Unfortunately, these strategies all require either a high volume of training data—536

potentially canceling out the savings of a rare event algorithm, which is useful precisely537

in the low-data regime—or very specific knowledge of phase space geometry, such as a538

bistable structure, which is not typically available for realistic climate models. A sec-539

ond, related problem is that the optimality property only holds true for a single com-540

mittor with a fixed threshold ℓ. What if we seek return periods for a whole range of thresh-541

olds? We would have to sacrifice the accuracy of some return periods in favor of others.542

Alternatively, we could use the committor for a single very high threshold ℓmax, but then543

even less training data would be available. Although it is interesting and worthwhile to544

search for committor functions based on traveling-wave dynamics, we leave that to fu-545

ture work, and in the next section we describe a simpler strategy to get around the stag-546

nation issue seen in Fig. 4.547

3.3 Trying-early adaptive multilevel splitting (TEAMS)548

To address the failure of AMS in the nonlinear regime, we adjust tsp = tδ(ℓ) =:549

t0(ℓ) − δ by an advance split time δ > 0, allowing some time for the child X̃ to drift550

farther away from the parent and possibly achieve a higher maximum score. Indeed, en-551

semble boosting (Gessner et al., 2021) does exactly that, systematically applying per-552

turbations every day from 19 to 7 days in advance of heat wave onset, although ensem-553

ble boosting does not by itself allow the calculation of return periods for the boosted events.554

When splitting early we lose the guarantee that R(X̃(t)) clears the current level ℓ (decpicted555

schematically in Fig.1b), which is why we frame our modified algorithm using subset sim-556

ulation (see section 3) which includes an accept/reject step: when a child fails to score557

higher than ℓ, it is discarded from the ensemble and its parent is duplicated instead (in558

other words, doubling its statistical weight). The resulting algorithm, which we call TEAMS559

(“trying-early adaptive multilevel splitting”), incurs additional cost due to rejected sam-560

ples, but also gains back the ability to build significantly upon ancestral scores. One can561

interpret δ as setting the width of the proposal distribution, a key parameter in Markov562

chain Monte Carlo methods. A wider proposal allows the child to explore farther afield563
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from its parent, but increases the risk of rejection. Proposal width often has to be tuned564

carefully, and the sampling community has devoted substantial efforts to adaptively de-565

signing the proposal (Walter R. Gilks & Sahu, 1998; Andrieu & Thoms, 2008). Such meth-566

ods will surely prove useful for complex climate models, but in our present proof-of-concept567

study of the algorithm, we found approximately optimal δ values by exhaustive grid search568

for each noise level. Section 4 explains this procedure and shows that the optimal δ can569

be related to the error saturation timescale, a classical measure of predictability.570

We performed a sequence of TEAMS experiments with (F4, δ) ∈ {3, 1, 0.5, 0.25}×571

{0, 0.2, 0.4, ..., 2.0}. We adjust the time horizon T = 6+δ to give each parameter choice572

the same length of score to boost. All other parameters are as before for the AMS ex-573

periments.574

Fig. 6 shows TEAMS in action for the same parameter sets from Fig. 4, but with575

(roughly optimal) advance splitting times δ = 0.0, 0.6, 1.0, and 1.4 for the decreasing576

noise levels (at F4 = 3, δ = 0 still works best, and panel (a) is the same as in Fig. 4a)).577

Note that the score functions R(X(t)) are only defined for times t > δ, because if t0(ℓ) <578

δ then tδ(ℓ) < 0, so we cannot apply the split early enough. This is implemented by579

setting the early scores to NaN, and lengthening the time horizon from T to T+δ as men-580

tioned above. We account for this extra cost in all the performance calculations to fol-581

low, but we omit the first δ time units from the plots. For all four stochastic forcing strengths,582

we see examples of children building significantly, and directly, upon a parent’s maxi-583

mum, without having to discover a new peak farther into the future. The values of the584

scores form continuous point clouds in panels (b,d,f,h), unlike the discrete horizontal bands585

appearing in Fig. 4(f,h) where δ = 0 and stochastic forcing is weak. The negative side-586

effect is that many gray dots fall short of the gray dashed line, indicating a rejected sam-587

ple. Clearly, increasing δ brings both higher risk and higher reward.588

Fig. 7 quantitatively confirms the hopeful suggestion of Fig. 6: that increasing δ589

can give TEAMS a speedup over DNS in the weak stochastic forcing regime. For all cases590

shown, TEAMS extends the estimated return period, accurately, well beyond the gray591

envelope which marks the limit achievable by an equal-cost run of DNS. The black ground592

truth curve remains within the 95% confidence band of TEAMS to return periods of ∼593

107 across all forcing levels. Simultaneously, the TEAMS confidence band is narrower594

than the DNS band.595

Fig. 7 shows TEAMS gives a good estimate of the return values when all runs are596

pooled together, but that most individual TEAMS runs underestimate the true return597

values while a few overestimate them to allow for a good pooled estimate. As in Lucente,598

Rolland, et al. (2022), we can attribute this behavior to apparent bias, which is best ex-599

plained by analogy: an experiment consisting of 100 flips of a coin with p = P(heads) =600

0.001 has a nine in ten chance of landing no heads, yielding a probability estimate p̂ =601

0. But one experiment out of ten will yield p̂ = 0.01, a gross over-estimate, and only602

by pooling these two scenarios together can we see the estimator’s lack of bias. Unlike603

the coin-flipping experiment, TEAMS is designed to preferentially sample extreme val-604

ues, but a given AMS run for L96 may still get stuck in a local optimum yielding un-605

derestimated return values, especially if the stochastic forcing is too weak to jolt a tra-606

jectory out of it. Thus, pooling over multiple runs is especially crucial in the determin-607

istic limit.608

4 Optimizing advance split time609

In this section, we explain how we determined optimal values of the advance split610

time δ using a simple exhaustive search. We then investigate the behavior of δ as a func-611

tion of stochastic forcing strength as a guide for choosing δ prior to running TEAMS on612

a more expensive model for which exhaustive search would not be feasible.613
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(a) (b)

(e) (f)

(c) (d)

(g) (h)

Figure 6. Scores for single ancestors and their descendants generated by the TEAMS algo-

rithm: the same as Fig. 4 but with advance split times δ chosen to be approximately optimal for

each noise level: δ = 0, 0.6, 1, and 1.4 for F4 = 3, 1, 0.5, and 0.25, respectively. Because δ = 0

is optimal for F4 = 3, (a,b) is the same as Fig. 4a,b. Section 4 explains how the δ values were

chosen.
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(b) (c)(a)

(e) (f)(d)

(h) (i)(g)

(k) (l)(j)

DNS 
same 
cost as 
TEAMS

Figure 7. Performance of the TEAMS algorithm: the same as Fig. 5 but with advance split

times δ chosen to be approximately optimal for each noise level: δ = 0, 0.6, 1, and 1.4 for

F4 = 3, 1, 0.5, and 0.25, respectively. Because δ = 0 is optimal for F4 = 3, (a-c) are the same

as Fig. 5a-c.
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4.1 Exhaustive search614

We selected the “optimal” δ values based on two simple performance metrics, which615

are plotted in Fig. 8.616

1. Return level RMSE: the root-mean-square difference of return level between a TEAMS617

estimate (from a single run) and the DNS-determined ground truth, where the mean618

is taken over uniform bins in log τ space. This metric is proportional to the L2-619

norm between a red line and the black line in the left columns of Figs. 5 and 7.620

In cases where the red line stops before the black line, it is extrapolated to longer621

return periods with a constant given by its maximum to penalize the algorithm622

getting stuck at a false upper bound. We calculate statistics of the return level623

RMSE across runs, including the mean and quantiles, which are displayed in Fig. 8(a,c,e,g).624

Note that these correspond to percentile bootstrap confidence intervals (Wasserman,625

2004), as opposed to the basic bootstrap confidence intervals shown in Figs. 5 and 7.626

Here we use the percentile bootstrap as a means of sensitivity analysis, to show627

the range of results that might occur due to sampling variability. The basic boot-628

strap, by contrast, is intended to bracket the ground truth of some parameter value.629

The return level RMSE can also be calculated for the pooled estimate, and it shows630

similar but noisier trends.631

2. Mean family gain: the maximum improvement (difference in scores) from ances-632

tor to descendant over all N ancestors, averaged over the 56 runs. This does not633

measure statistical accuracy, but only the consistent ability to generate extreme634

events out of moderate events. Fig. 8 (b,d,f,h) shows mean family gain. Other met-635

rics of gain, such as the maximum descendant score minus the maximum ances-636

tral score (not necessarily from the same family tree) yield very similar trends with637

δ, albeit different absolute values.638

A good choice of δ should have a small return level RMSE and a large mean family gain.639

Based on both performance metrics, we selected optimal δ = 0, 0.6, 1, 1.4 for F4 = 3, 1, 0.5, 0.25,640

respectively. These optimal values are marked with vertical gray lines in Fig. 8, and they641

are used in Figs. 6 and 7. For F4 = 0.5, the two metrics gave slightly difference opti-642

mal values ( δ = 1.2 for return level RMSE or δ = 1 for mean family gain); we chose643

δ = 1 because it gave the better pooled estimate. We emphasize that the optimal val-644

ues are only discernible by averaging over many independent runs. For completeness, we645

display all 44 return level vs. return period plots (4 values of F4 × 11 values of δ) in the646

supplement. In general, shifting the optimal δ by ±0.2 doesn’t change the results qual-647

itatively, but larger shifts can degrade performance. The absolute values of errors should648

not be compared between stochastic forcing levels, since each has its own statistical steady649

state. Rather, the important takeaway is the increase in optimal δ as the stochastic forc-650

ing weakens. Indeed, in the singular limit of zero stochastic forcing the advance split time651

must necessarily go to infinity to have any effect at all, and initial condition perturba-652

tions would be needed to split trajectories.653

To summarize, we have found that some choices of δ can make TEAMS effective654

where AMS is not effective, and that the optimal δ increases as stochastic forcing mag-655

nitude decreases. In the next section we relate this behavior to the predictability time,656

which points toward a cheap method to estimate an optimal—or at least, reasonably performant—657

δ, without having to repeatedly run TEAMS.658

4.2 Relation between optimal advance time and error saturation timescales659

Heuristically, we expect the optimal advance time δ to reflect the divergence timescale660

of perturbed trajectories that are introduced in splitting. Can this be related to classi-661

cal predictability timescales? Lyapunov analysis describes perturbation growth by way662

of Lyapunov exponents and singular vectors (Cencini & Ginelli, 2013; Norwood et al.,663
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(b)(a)

(d)(c)

(f)(e)

(h)(g)

Figure 8. Performance of TEAMS as a function of advance split time δ and as measured by

(a,c,e,g) return level RMSE and (b,d,f,h) mean family gain for F4 = (a,b) 3, (c,d) 1, (e,f) 0.5,

and (g,h) 0.25. Return level RMSE is computed separately for each run. Thick red lines show the

average over runs, and red envelopes show the quantile ranges 25%-75% (or interquartile range,

IQR) and 2.5%-97.5% across the 56 runs. Mean family gain is maximum gain in score within a

single family averaged over the 56 runs. Vertical gray lines show the optimal values of δ used in

Figs. 6 and 7.
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2013; Pazo et al., 2010; Maiocchi et al., 2024), but it applies to the regime of infinites-664

imal perturbations. The kind of perturbations we strive for in rare event sampling are665

finite and nonlinear, turning peaks into substantially larger peaks as in Figs. 4, 6. “Fi-666

nite size Lyapunov exponents” (FSLEs) (Boffetta et al., 1998; Cencini & Vulpiani, 2013)667

are closer to what we need, generalizing the Lyapunov exponent to be dependent on an668

initial error amplitude. Typically, error grows in two stages: first exponentially, during669

which the FSLE equals the leading Lyapunov exponent, and then diffusively (scaling as670

a power law with time), during which the FSLE declines. The divergence timescale is671

bounded below by this change point, which approaches zero as stochastic forcing becomes672

dominant: indeed, the variance of pure Brownian motion grows linearly in t immediately.673

On the other hand, the optimal δ is bounded above by the error saturation timescale,674

when perturbed ensemble members become independent and inhabit totally different re-675

gions of the attractor. By then, the root-mean-square error (RMSE) of the ensemble will676

equal the root-mean-square distance (RMSD) between two randomly chosen points on677

the attractor. In climate models, the saturation timescale is a convenient and effective678

measure of predictability (Sheshadri et al., 2021). Clearly, δ must be chosen shorter than679

the time to saturation, since a child trajectory ought to take advantage of pre-existing680

maxima produced by its parent. To investigate this relationship, the following experi-681

ments measure time in terms of fraction of saturation.682

For each F4 considered, we ran a moderate-length control simulation x(t) for 0 ≤683

t ≤ 1050 (discarding the first 50 as spinup), and measured the RMSD for this simu-684

lation. At initialization times 50, 70, 90, ..., 990 (48 in total) we branched a 16-member685

ensemble with identical initial conditions x(t) but independent stochastic forcing real-686

izations (a convenient feature of stochastic forcing is that errors grow even from perfect687

initial conditions, removing dependence on initial perturbation amplitude). We integrated688

each member for 15 time units, calculated RMSE as a function of time (separately for689

each ensemble), and inverted to find the times tϵ at which the fraction of saturation ϵ =RMSE/RMSD690

reached a given value. In other words, RMSE(tϵ) = ϵ × RMSD. Finally, we take the691

average across initializations to get a single value tϵ for each of several ϵ values. The to-692

tal cost of this experiment is 1.2×104 time units, roughly equal to 1.5 runs of AMS and693

much cheaper than the 56-run pooled estimate. Moreover, halving the number of initial-694

izations used yields qualitatively similar results.695

Fig. 9 shows timeseries of x0(t) (both control and perturbed) and error growth for696

two such ensembles from the high and low stochastic forcing cases. The time axis is trun-697

cated to 10 days past initialization. The early linear growth of ϵ vs. tϵ indicates a steady698

decline in relative growth rate, meaning that the perturbations begin to enter the dif-699

fusive (sub-exponential) growth regime quite early. This is thanks to stochastic forcing,700

which is visible in the top row as the emergence of red members from the shadow of the701

control trajectory. As expected, the error growth is much faster for the higher value of702

stochastic forcing.703

If the optimal δ could be predicted from the error growth rates alone, the TEAMS704

algorithm could be calibrated simply and cheaply before being deployed. Fig. 10 shows705

the time t3/8 when RMSE reaches a fixed fraction of RMSD (3/8) as compared to the706

optimal δ values determined from Fig. 8, as a function of the strength of stochastic forc-707

ing. We include results from forcing at wavenumbers m = 1, 4, 7, 10. There is an en-708

couraging similarity between the dependence of optimal δ and t3/8 on stochastic forc-709

ing strength, suggesting that the fractional saturation time might be useful to provide710

an estimate for δ.711

Another interesting and less obvious feature is the dependence on wavenumber of712

error growth (albeit a weak dependence): medium-length wave forcing (m = 4 and m =713

7) drives error to saturation faster than very short (m = 10) or long (m = 1) wave714

forcing, which informed our choice of m = 4 throughout the TEAMS experiments. How-715
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(a) (b)

(c) (d)

Figure 9. Growth of perturbations in the experiments described in subsection 4.2 for one

representative initialization time t0 = 70 and two values of the stochastic forcing: (a,c) F4 = 3

and (b,d) F4 = 0.25 . (a,b) show x0(t) for the control simulation (black) and 16 simulations

with the same initial condition but different white-noise forcing realizations (red). (c,d) show

Euclidean distance between each ensemble member to the control as a fraction of RMSD versus

time (red), and the fraction of saturation RMSE/RMSD versus the time until each ϵ value is

reached averaged across all initializations and ensemble members (black), i.e., ϵ vs. tϵ. Dots indi-

cate ϵ = 1/32, 1/16, 1/8, 1/4, 3/8, 1/2, and these same values reflected about 1/2.

ever, the variability due to initial conditions (indicated by ±1σ error bars) tend to ex-716

ceed systematic differences between wavenumbers. This variability reflects a distribu-717

tion of divergence timescales across the attractor, which was also found be be quite het-718

erogeneous in Maiocchi et al. (2024) (there measured by Lyapunov exponents). It also719

suggests that the best strategy may be to not fix a single δ, but to allow the algorithm720

to adaptively set a δ, or sample from a range, to account for differing divergence timescales721

between different initial conditions, and this could be investigated in future work.722

5 Conclusions and Outlook723

A vexing challenge in climate science is reliably quantifying the probability of ex-724

treme weather events, which are fundamentally difficult to characterize because of data725

scarcity. Among various competing strategies, rare event algorithms hold several key ad-726

vantages, chiefly (i) access to dynamical samples of the events, rather than just return727

period curves which extreme value theory might provide, and (ii) more statistical rigor728

than storyline-based approaches like “ensemble boosting” (Gessner et al., 2021), thanks729

to careful re-weighting of cloned trajectories. Inspired by recent successes of rare event730

algorithms on long-lasting heat waves (Ragone et al., 2018) and idealized models of regime731

transitions (Lucente, Rolland, et al., 2022; Jacques-Dumas et al., 2023), we have inves-732

tigated the ability of a particular algorithm, adaptive multilevel splitting (AMS) to sam-733

ple extreme events of a different character: intermittent, short-lived bursts of energy in734

the Lorenz-96 model which have some similar characteristics as extreme daily rain or wind735

associated with midlatitude cyclones.736

Even in this simple model, we have elucidated some key obstacles that hinder rare737

event splitting algorithms on sudden, short-lived events, and furthermore taken some steps738
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Figure 10. Time t3/8 until the perturbations described in subsection 4.2 reach a fixed fraction

(3/8) of RMSD as a function of stochastic forcing strength Fm for different wavenumbers m. Er-

ror bars are ±1 standard deviation of the distribution over different initial conditions. Optimized

values of δ (determined from the performance metrics in Fig. 8) are shown in the black dashed

line for m = 4.

to overcome them. AMS sets up a sequence of thresholds for an observable of interest739

and estimates conditional exceedance probabilities in stages by cloning and perturbing740

“successful” ensemble members when they cross a threshold, to generate new “success-741

ful” samples. This simple prescription suffers a fatal problem when the events are short-742

lived compared to the divergence timescale (how long it takes a perturbation to grow ap-743

preciably): a perturbed ensemble member essentially replicates its parent’s success, and744

doesn’t develop its own history until after the event is over. Neither the magnitude nor745

the diversity of rare event samples is enhanced. To fix this problem, we have drawn in-746

spiration from ensemble boosting to apply a perturbation in advance of the rare event747

by some lead time δ. But we have also retained rigorous statistics for these “storylines”748

by exploiting a more general rare event algorithm, subset simulation (SS), of which AMS749

is only a special case. We name the resulting algorithm “trying-early AMS” (TEAMS)750

and demonstrate its success in sampling the tails of the rare event distribution more ef-751

ficiently than direct numerical simulation can do, despite an extra computational cost752

due to rejected samples.753

Our study is a proof of concept that suggests a path forward, but with some open754

questions and directions for improvement, which we summarize here:755

• The most crucial algorithmic parameter is the advance split time, δ, which is equiv-756

alent to a proposal distribution width. Our grid search for optimal δ, though not757

a scalable solution, demonstrates a relationship with the time over which pertur-758

bations grow to a fraction of saturation. An important goal for future work is to759

assess this result for other underlying models such as general circulation models760

or for other error growth metrics. Given the localized nature of our observable (x2
0761

is the energy at a single longitude site), it is interesting that a global Euclidean762

metric correlates with the optimal δ. Weighting the metric more heavily for grid763

points near k = 0 might further improve this relationship.764

• The weak stochastic forcing limit Fm → 0 is important to confront for climate765

models, which may be more practical to perturb just at the splitting time rather766

than continuously at every time step, especially if the climate model is not already767

equipped with a stochastic subgrid parameterization. In the TEAMS framework,768
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this would translate to perturbing a simulation at a lead time δ ahead of the event,769

but not at all following times. Perturbing at just one time makes a given pertur-770

bation magnitude less powerful—but also opens up interesting possibilities such771

as the use of deterministic optimization strategies to more efficiently discover the772

most extreme event possible from a given initial condition. For example, some di-773

rections of perturbation (singular vectors) grow much faster than others, a fact774

which has informed ensemble design in operational weather forecasting (Palmer775

& Zanna, 2013), and could be used to further improve the algorithm. Methods776

such as conditional nonlinear optimal perturbation (Wang et al., 2020, and ref-777

erences therein), generalized stability theory (Farrell & Ioannou, 1996), and large778

deviation theory (Dematteis et al., 2018, 2019; Schorlepp et al., 2023) may prove779

useful for this task.780

• Related to the previous point, it is desirable to have greater efficiency with sam-781

ples in order to deploy rare event algorithms at scale. For example, we should not782

simply discard rejected samples, but rather learn from their “mistakes” to design783

better perturbations. Frameworks like Bayesian optimization and adaptive impor-784

tance sampling based on model reduction have been developed for this task, and785

have been used in safety assessment for reliability engineering (e.g., Cousins & Sap-786

sis, 2014; X. Huang et al., 2016; Mohamad & Sapsis, 2018; Sapsis, 2020; Uribe et787

al., 2021; Zhang et al., 2022).788

Rare event algorithms represent a new way to allocate computational resources to789

where they matter most. To realize their considerable potential for efficiency gains, we790

have taken one of the necessary steps to make them flexible enough to target intermit-791

tent, localized, transient events that characterize phenomena such as heavy precipita-792

tion in complex global climate models. The Lorenz-96 model is an invaluable prototype793

as a cheap system that poses similar algorithmic challenges. Forthcoming papers will use794

the insight gained here as a stepping stone to more complex and realistic models.795

Data availability statement796

The software to simulate and sample extreme events in Lorenz-96 using TEAMS797

is available in a public Zenodo repository at https://zenodo.org/doi/10.5281/zenodo.10608187.798

Interested readers are encouraged to try out the algorithm on other systems of interest,799

and should not hesitate to contact J. F. for assistance.800

Acknowledgments801

This research is part of the MIT Climate Grand Challenge on Weather and Climate Ex-802

tremes. It received support by the generosity of Eric and Wendy Schmidt by recommen-803

dation of Schmidt Sciences as part of its Virtual Earth System Research Institute (VESRI).804

Computations for this research were carried out on the MIT Engaging cluster.805

References806

Abbot, D. S., Webber, R. J., Hadden, S., Seligman, D., & Weare, J. (2021, Dec).807

Rare Event Sampling Improves Mercury Instability Statistics. The Astrophys-808

ical Journal , 923 (2), 236. Retrieved from https://dx.doi.org/10.3847/809

1538-4357/ac2fa8 doi: 10.3847/1538-4357/ac2fa8810

Adachi, S. A., & Tomita, H. (2020). Methodology of the Constraint Condition811

in Dynamical Downscaling for Regional Climate Evaluation: A Review.812

Journal of Geophysical Research: Atmospheres, 125 (11), e2019JD032166.813

Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/814

10.1029/2019JD032166 (e2019JD032166 10.1029/2019JD032166) doi:815

https://doi.org/10.1029/2019JD032166816

–25–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Andrieu, C., & Thoms, J. (2008, Dec). A tutorial on adaptive MCMC. Statistics817

and Computing , 18 (4), 343-373. Retrieved from https://doi.org/10.1007/818

s11222-008-9110-y doi: 10.1007/s11222-008-9110-y819

Au, S.-K., & Beck, J. L. (2001). Estimation of small failure probabilities in820

high dimensions by subset simulation. Probabilistic Engineering Mechan-821

ics, 16 (4), 263-277. Retrieved from https://www.sciencedirect.com/822

science/article/pii/S0266892001000194 doi: https://doi.org/10.1016/823

S0266-8920(01)00019-4824

Baars, S., Castellana, D., Wubs, F., & Dijkstra, H. (2021). Application of adap-825

tive multilevel splitting to high-dimensional dynamical systems. Jour-826

nal of Computational Physics, 424 , 109876. Retrieved from https://827

www.sciencedirect.com/science/article/pii/S0021999120306501 doi:828

https://doi.org/10.1016/j.jcp.2020.109876829

Boffetta, G., Giuliani, P., Paladin, G., & Vulpiani, A. (1998). An Exten-830

sion of the Lyapunov Analysis for the Predictability Problem. Jour-831

nal of the Atmospheric Sciences, 55 (23), 3409 - 3416. Retrieved from832

https://journals.ametsoc.org/view/journals/atsc/55/23/1520-0469833

1998 055 3409 aeotla 2.0.co 2.xml doi: https://doi.org/10.1175/834

1520-0469(1998)055⟨3409:AEOTLA⟩2.0.CO;2835

Bouchet, F., Rolland, J., & Simonnet, E. (2019, Feb). Rare Event Algorithm836

Links Transitions in Turbulent Flows with Activated Nucleations. Phys. Rev.837

Lett., 122 , 074502. Retrieved from https://link.aps.org/doi/10.1103/838

PhysRevLett.122.074502 doi: 10.1103/PhysRevLett.122.074502839

Bucklew, J. A. (2004). Introduction to Rare Event Simulation (1st ed.). Springer840

New York, NY. doi: https://doi.org/10.1007/978-1-4757-4078-3841

Buizza, R., Milleer, M., & Palmer, T. N. (1999). Stochastic representation of842

model uncertainties in the ECMWF ensemble prediction system. Quar-843

terly Journal of the Royal Meteorological Society , 125 (560), 2887-2908. Re-844

trieved from https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/845

qj.49712556006 doi: https://doi.org/10.1002/qj.49712556006846

Cencini, M., & Ginelli, F. (2013, Jun). Lyapunov analysis: from dynamical systems847

theory to applications. Journal of Physics A: Mathematical and Theoretical ,848

46 (25), 250301. Retrieved from https://dx.doi.org/10.1088/1751-8113/849

46/25/250301 doi: 10.1088/1751-8113/46/25/250301850

Cencini, M., & Vulpiani, A. (2013, Jun). Finite size Lyapunov exponent: review851

on applications. Journal of Physics A: Mathematical and Theoretical , 46 (25),852

254019. Retrieved from https://dx.doi.org/10.1088/1751-8113/46/25/853

254019 doi: 10.1088/1751-8113/46/25/254019854

Coles, S. (2001). An introduction to statistical modeling of extreme values (1st ed.).855

Springer. doi: 10.1007/978-1-4471-3675-0856

Cousins, W., & Sapsis, T. P. (2014). Quantification and prediction of ex-857

treme events in a one-dimensional nonlinear dispersive wave model. Phys-858

ica D: Nonlinear Phenomena, 280-281 , 48-58. Retrieved from https://859

www.sciencedirect.com/science/article/pii/S016727891400092X doi:860

https://doi.org/10.1016/j.physd.2014.04.012861

Cérou, F., & Guyader, A. (2007). Adaptive Multilevel Splitting for Rare862

Event Analysis. Stochastic Analysis and Applications, 25 (2), 417-443.863

Retrieved from https://doi.org/10.1080/07362990601139628 doi:864

10.1080/07362990601139628865

Cérou, F., Guyader, A., & Rousset, M. (2019). Adaptive multilevel splitting: His-866

torical perspective and recent results. Chaos: An Interdisciplinary Journal of867

Nonlinear Science, 29 (4), 043108. Retrieved from https://doi.org/10.1063/868

1.5082247 doi: 10.1063/1.5082247869

Dematteis, G., Grafke, T., & Vanden-Eijnden, E. (2018). Rogue waves and large870

deviations in deep sea. Proceedings of the National Academy of Sciences,871

–26–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

115 (5), 855-860. Retrieved from https://www.pnas.org/doi/abs/10.1073/872

pnas.1710670115 doi: 10.1073/pnas.1710670115873

Dematteis, G., Grafke, T., & Vanden-Eijnden, E. (2019). Extreme Event Quantifi-874

cation in Dynamical Systems with Random Components. SIAM/ASA Journal875

on Uncertainty Quantification, 7 (3), 1029-1059. Retrieved from https://doi876

.org/10.1137/18M1211003 doi: 10.1137/18M1211003877

Dwyer, J. G., & O’Gorman, P. A. (2017). Changing duration and spatial ex-878

tent of midlatitude precipitation extremes across different climates. Geo-879

physical Research Letters, 44 (11), 5863-5871. Retrieved from https://880

agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL072855 doi:881

https://doi.org/10.1002/2017GL072855882

Emanuel, K. (2021). Response of Global Tropical Cyclone Activity to Increasing883

CO2: Results from Downscaling CMIP6 Models. Journal of Climate, 34 (1), 57884

- 70. Retrieved from https://journals.ametsoc.org/view/journals/clim/885

34/1/jcliD200367.xml doi: https://doi.org/10.1175/JCLI-D-20-0367.1886

Farrell, B. F., & Ioannou, P. J. (1996). Generalized Stability Theory. Part I:887

Autonomous Operators. Journal of Atmospheric Sciences, 53 (14), 2025 -888

2040. Retrieved from https://journals.ametsoc.org/view/journals/889

atsc/53/14/1520-0469 1996 053 2025 gstpia 2 0 co 2.xml doi:890

10.1175/1520-0469(1996)053⟨2025:GSTPIA⟩2.0.CO;2891

Finkel, J., Webber, R. J., Gerber, E. P., Abbot, D. S., & Weare, J. (2021). Learn-892

ing Forecasts of Rare Stratospheric Transitions from Short Simulations.893

Monthly Weather Review , 149 (11), 3647 - 3669. Retrieved from https://894

journals.ametsoc.org/view/journals/mwre/149/11/MWR-D-21-0024.1.xml895

doi: 10.1175/MWR-D-21-0024.1896

Gagne II, D. J., Christensen, H. M., Subramanian, A. C., & Monahan, A. H.897

(2020). Machine Learning for Stochastic Parameterization: Generative Ad-898

versarial Networks in the Lorenz ’96 Model. Journal of Advances in Mod-899

eling Earth Systems, 12 (3), e2019MS001896. Retrieved from https://900

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001896901

(e2019MS001896 10.1029/2019MS001896) doi: https://doi.org/10.1029/902

2019MS001896903
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